Joint Device Scheduling and Resource Allocation for Latency Constrained Wireless Federated Learning

LANGUAGE English

SOURCE  IEEE Transactions on Wireless Communications, Vol: 20 No: 1 pp: 453-467

Published Date: Jan. 2021

ABSTRACT

In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In this paper, we propose a joint device scheduling and resource allocation policy to maximize the model accuracy within a given total training time budget for latency constrained wireless FL. A lower bound on the reciprocal of the training performance loss, in terms of the number of training rounds and the number of scheduled devices per round, is derived. Based on the bound, the accuracy maximization problem is solved by decoupling it into two sub-problems. First, given the scheduled devices, the optimal bandwidth allocation suggests allocating more bandwidth to the devices with worse channel conditions or weaker computation capabilities. Then, a greedy device scheduling algorithm is introduced, which selects the device consuming the least updating time obtained by the optimal bandwidth allocation in each step, until the lower bound begins to increase, meaning that scheduling more devices will degrade the model accuracy. Experiments show that the proposed policy outperforms state-of-the-art scheduling policies under extensive settings of data distributions and cell radius.

This entry was posted in Publications and tagged . Bookmark the permalink.

Leave a Reply