Learning-Based Remote Channel Inference: Feasibility Analysis and Case Study

LANGUAGE English

SOURCE  IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,Vol: 18 No: 7 pp: 3554-3568

Published Date: JUL 2019

ABSTRACT

Channel state information (CSI) plays a vital role in wireless communication systems. However, the CSI acquisition overhead is an enormous obstacle to realize the system  performance improvements promised by massive connectivity and massive multiple-input-multiple-output (MIMO). To alleviate this overhead, this paper proposes a remote channel inference framework by probing the channels occupied by a source base station (BS) and inferring the channels of target BSs at geographically separated sites. The work generalizes existing literature which mainly focuses on utilizing the CSI linear correlations  of adjacent antennas, by adopting a model-free deep learning framework to investigate non-linear dependence among remote CSI. The existence of such cross-BS CSI dependence is first shown by calculating the mutual information between remote channels, and the Cramér-Rao lower bound of remote CSI inference performance based on a one-ring channel model. Inspired by this finding, modern deep learning approaches are leveraged to perform remote channel inference in heterogeneous networks for both single user and multi-user scenarios. The simulation results based on ray tracing data show evident performance advantages over conventional methods, under both homogeneous and heterogeneous frequency coverage. The proposed framework achieves beamformer inference accuracy within 4.6% of the genie-aided optimum at the cost of sweeping only two beams.

This entry was posted in Publications and tagged . Bookmark the permalink.

Leave a Reply