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Abstract—We consider a system where multiple terminals
transmit their randomly generated status updates to a base
station (BS) sharing a wireless multiaccess uplink channel. The
problem of interest, especially in massive Internet-of-Things
systems, is that how to schedule the terminals to minimize
the time-average age-of-information in a decentralized manner,
namely terminals transmit autonomously without signalling ex-
change (overhead) with the BS or other terminals. Towards
this end, the round-robin with one-packet buffers (the newest
packet at each terminal only) policy (RR-ONE) is proposed
and proved optimal among arrival-independent renewal (AIR)
policies. In addition to its simple structure which is instrumental
for decentralized implementation, RR-ONE is further proved
asymptotically (massive terminals) optimal among all policies,
including centralized and non-causal policies.

I. INTRODUCTION

Age-of-information (AoI) is a recently proposed metric
specifically to quantify the timeliness of status information
[1]; it characterizes the information monitoring latency at a
destination node, or simply put, time elapsed since the last-
updated packet’s generation. This definition jointly accounts
for the delay introduced by sampling and data communication,
which distinguishes itself from the conventional end-to-end
(e2e) communication (queuing and transmission) delay metric.
The AoI only coincides with the conventional e2e delay at the
time when a status update packet is successfully delivered;
another distinct difference is that the e2e delay is defined for
each packet, however, the AoI is a constantly evolving mea-
surement at the destination. In systems where the timeliness
of status information is critical for real-time applications, the
AoI becomes an important metric to optimize.

The wireless communication system, which plays an inte-
gral part in status update systems, is therefore well motivated
to optimize AoI, especially for future massive Internet-of-
Things (IoT) enabled real-time applications. One of the fun-
damental restrictions of wireless communication systems is
that the transmissions are subject to interference due to the
broadcast nature of electromagnetic waves, which amounts
to the fact that terminals cannot transmit simultaneously;
otherwise collisions happen and transmissions fail with no data
delivered. Therefore, terminals should be carefully scheduled
to avoid such collisions. Meanwhile, in wireless uplinks with
a large number of terminals, the scheduling design is faced
with the overhead issue which is caused by requiring global
state information for the scheduling decisions. The exchange
of the state information entails significant signaling overhead
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Fig. 1. Considered system architecture and status update procedure.

which cannot be overlooked. In view of this, the scheduling
policy is preferably decentralized, i.e., decisions are made au-
tonomously at terminals, requiring only local information. For
instance, the carrier-sensing-medium-access (CSMA) scheme
is a widely-used and successful application of decentralized
protocol in wireless networks. In particular, terminals transmit
based on a contention protocol and scheduling decisions are
made in a decentralized manner. However, the CSMA protocol
is only designed for throughput maximization and may face
severe challenges in status update systems.

A. Main Contributions and Related Work

Concerning the aforementioned scenario and correspond-
ing challenges, our main contributions include: (a) Among
arrival-independent renewal (AIR) scheduling policies, whose
decisions are independent with packet-arrival processes and
hence suitable for decentralization, a round-robin policy with
one-packet buffers (only retains the most up-to-date packet)
at terminals (RR-ONE) is proved optimal. The proof tech-
nique leverages a generalized Poisson-arrival-see-time-average
(PASTA) theorem which, as far as we know, has not been
adopted in the related literature before. (b) RR-ONE is proved
asymptotically optimal among all policies with a massive num-
ber of terminals. It is shown that the optimum time-average
AoI is proportional to the number of terminals asymptotically;
the optimum linear scaling factor is 1

2 ; RR-ONE is proved to
achieve the optimum scaling factor.

Among the recent progress on AoI optimization, e.g., [1]–
[7], the study on multi-queue scheduling problems is the



most related work [5]–[7]. Hsu et al. approach this problem
considering the wireless broadcast channel where the schedul-
ing decisions are centralized; they prove the optimal policy
is age-threshold-based. The scheduling problem of multiple
sources inside a finite-length transmission frame to minimize
AoI is proved NP-hard [6]. The Whittle’s index is leveraged
by Kadota et al. [5] based on a restless multi-armed-bandit
formulation; it is shown that an age-greedy policy is optimal
in the symmetric case and the Whittle’s index is derived
for the asymmetric case. The major distinction between our
formulation and existing work is that we assume: (a) status
packets arrive randomly; (b) limited information is available
for the decisions to facilitate decentralized implementation.
As far as we know, no existing work on AoI has addressed a
practical scenario involving both aspects.

II. SYSTEM MODEL AND MAIN RESULTS

Consider a base station (BS), alternatively referred to as
central controller or fusion center, which collects status pack-
ets from multiple terminals, as shown in Fig. 1. A time-slotted
system is considered. The status data packets are generated and
stored at terminal buffers. The number of packets generated
at time t of terminal n is denoted by Ln(t) and Ln(t) is
assumed to be a Bernoulli random variable with parameter λn;
the arrival processes {Ln(t), t = 1, 2, ...}, n ∈ {1, ..., N} are
independent over terminals and time. The number of terminals
is denoted by N . Let Un,π(t) denote the scheduling decision
of terminal n at time t for a given policy π, i.e., Un,π(t) = 1
if terminal n is scheduled and Un,π(t) = 0 otherwise.

The time-average AoI is denoted by h̄
(T,N)
π ,

1
TN

∑T
t=1

∑N
n=1 hn,π(t), where the AoI at the t-th time

slot for terminal n based on policy π is denoted by hn,π(t),
and the time horizon is T . Denote time-average AoI over
infinite time horizon as

h̄(∞,N)
π , lim

T→∞
h̄(T,N)
π . (1)

The evolution of AoI can be written as

hn,π(t+ 1) = hn,π(t)− Un,π(t)
∏
m6=n

(1− Um,π(t))gn(t) + 1,

(2)
where gn(t) denotes the AoI reduction with a successful up-
date from terminal n. Consequently, we have gn(t) = 0 when
queue-n is empty at time t. The AoI for each terminal always
increases by one after each time slot. Based on this definition
(2), whenever a collision happens, i.e., more than one terminals
transmit in the same time slot, no status is updated. Note that
transmission failures only happen with collisions, otherwise
the transmission is assumed successful; this corresponds to the
interference-limited regime and therein failures due to noise
are negligible. In addition, denote the average AoI of terminal-
n under policy π as h̄(T )

n,π , 1
T

∑T
t=1 hn,π(t).

The status update procedure is described in Fig. 1. We
assume the following sequence of events in each time slot.
At the beginning of each time slot, scheduling decisions are
made, including:

• Terminal scheduling: Decide which terminal updates and
transmits in this time slot.

• Packet management: Once scheduled, the terminal can
apply a packet management scheme, e.g., it can choose a
packet from its queue to transmit, or drop several packets.

Based on the scheduling decision, the scheduled terminal
transmits its update packet in the uplink (assuming one packet
is transmitted in each time slot), and thereby the AoI is
refreshed at the BS. Afterwards, packets arrive randomly at
terminals (the age of newly arrived packets is zero) and then
the age of all packets and AoIs of all terminals increase by
one. This marks the end of a time slot. The AoI at the t-th
time slot is defined as the AoI at the end of the time slot.

The objective is to minimize the infinite-horizon time-
average AoI (1) over all feasible policies. As a first step, the
following definition and Lemma 1 (cf. proof in [8]) enable
us to only consider work-conserving non-collision (WCNC)
policies without loss of optimality.

Definition 1 (WCNC policy): A WCNC policy is a policy
that is never idle when there is at least one packet in terminal
queues, nor schedules multiple terminals simultaneously. �

Lemma 1: For a non-WCNC policy, there exists at least one
WCNC policy that achieves lower AoI. �

As discussed previously, for overhead concerns that deci-
sions should be decentralized, we first consider AIR policies
defined as follows. Denote the resultant scheduling interval
process of terminal-n based on policy π as X(k)

n,π , k = 1, 2, ...
where k is the scheduling interval index. Define Rn,π(t) as
the counting process of scheduling times before time t for
terminal n, i.e., Rn,π(t) , sup{r :

∑r
k=0X

(k)
n,π ≤ t}.

Definition 2 (AIR policy): A policy π is an AIR policy if
the following conditions are both met.

(i) The scheduling interval processes {X(k)
n,π, n = 1, ..., N}

are independent with the packet arrival processes at ter-
minals, with finite first and second raw moments denoted
by mn and vn respectively.

(ii) The counting processes Rn,π(t) are renewal processes. �

By definition, the set of AIR policies is essentially a subset
of all policies. The condition (i) is in fact reflecting the
practical perspective that the scheduling decisions are desired
to be independent of the packet arrival processes to enable
decentralized implementation and reduce signalling exchange
overhead. The condition (ii) does enforce an additional con-
straint that the scheduling intervals are i.i.d.; however the
distributions can be arbitrary as long as they have finite
first and second moments. Note that, notwithstanding these
conditions, it is found (Theorem 2) that the optimal AIR policy
with proper packet management is asymptotically optimal
among all policies in the massive IoT regime.

A. Main Results

Definition 3 (RR-ONE): RR-ONE, denoted by RR in
the subscript, is defined as a policy that schedules the
nRR-th terminal at each time slot which satisfies nRR =



min {n : τn = maxm=1,...,N τm}, and only stores the latest-
arrival packet at each terminal. The time since last update
from terminal m is denoted by τm. �

Theorem 1: RR-ONE is the optimal AIR policy to minimize
the time-average AoI, with

h̄
(∞,N)
RR =

1

N

N∑
n=1

1

λn
+
N − 1

2
.� (3)

Theorem 2: RR-ONE is asymptotically optimal among all
policies in the massive IoT regime; it achieves the optimum
asymptotic scaling factors, i.e.,

lim
N→∞

h̄
(∞,N)
RR

N
= lim
N→∞

h̄
(∞,N)
opt

N
=

1

2
, ∀λi, (4)

lim
1
λi
→∞

λih̄
(∞,N)
RR = lim

1
λi
→∞

λih̄
(∞,N)
opt =

1

N
,

∀λj,j 6=i and N, (5)

where h̄(∞,N)
opt denotes the minimum time-average AoI. �

Corollary 1: The minimum time-average AoI scales linearly
with the number of terminals asymptotically, and the optimum
scaling factor is 1

2 . �
The above results mainly establish the optimality of RR-

ONE; another important note is that RR-ONE can be easily
adapted for decentralized implementation. Roughly illustrated,
each terminal is assigned a unique time slot to transmit, in a
frame of length N , and only retains the most up-to-date packet
in its buffer. A detailed protocol which accounts for variable
N , i.e., random terminal appearances, is described in [8].

III. PROOF OF THEOREM 1: OPTIMAL AIR POLICY

The quest for the optimal policy, among all policies with
any given N , to minimize the time-average AoI seems elusive,
because the problem can be essentially viewed as a restless
multi-armed bandit problem with time- and arm-correlated
reward functions. Besides, there is a strong probability that
the optimal policy requires global information exchange and
hence decentralization-unfriendly. Therefore, in this section,
we resolve to derive the optimal AIR policy to minimize
the time-average AoI in (1) following a generalized PASTA
theorem, i.e., the arrival-see-time-average (ASTA) property
with a Markov state process as the observed process and an
independent outside observer [9].

First, consider the queue evolution of terminal-n based
on AIR policies; it is similar with an M/G/1 queue given
the definition of AIR policies, with a subtle, but important,
difference that the service (in this case the service time is
the scheduling interval) begins immediately after a packet
departure, even if there is no packet waiting in the queue. In
the case that there is no packet is in the queue, the service
proceeds independently till the end, i.e., scheduled, during
which period two possible circumstances can occur: 1) there
are (at least one) packet arrivals and thereby one of the packets
is updated under a certain packet management policy; 2) there
is no packet arrival and consequently no packet is updated.
It is clear that under this queue model, the optimal packet

management, under arbitrary scheduling policy, is to always
update the most up-to-date packet, i.e., the packet that arrives
the last; the resultant queue is equivalent to having a buffer
size of one and storing only the latest arrival packet. Note
that this packet management policy is not necessarily optimal
with preemptive service model due to service interruption [4].
However, the service (update of a terminal) in this paper is
assumed instant, and hence, without loss of optimality, we
only consider this packet management policy henceforth. The
age of the packet in queue-n (buffer size is one) is denoted
by An(t), t = 1, 2, ..., a sample path of which is shown in
the left of Fig. 2. Upon a packet arrival, e.g., ai in Fig. 2, the
age An(t) drops to one (measured at the end of the time slot).
When terminal-n is scheduled at the time of si, the AoI at
the BS is updated to the age of the packet at terminal n, i.e.,
An(si). Note that we prescribe a generalized age of An(si)
that between each update and next packet arrival, e.g., between
s1 and a1, An(t) equals the AoI of terminal n at the BS
although there is no packet in the queue during the time. By
doing this, we make An(t) evolve independently with hn,π(t)
while not affecting the AoI update procedure; this is crucial
for the ASTA property to apply.

Based on the renewal process condition of AIR policies, and
following the same arguments in, e.g., [4], the time-average
AoI can be readily calculated by the sum of the geometric
areas Qk,n in Fig. 2:

h̄(∞,N)
n,π = lim

T→∞

K

T

1

K

K∑
k=1

Qk,n =
E[Qk,n]

mn
. (6)

The last equality is based on the elementary renewal theorem.

h̄(∞,N)
n,π =

1

mn
E

[
X(k)
n,πAn(sk) +

(
X(k)
n,π − 1

) X(k)
n,π

2

]
(a)
=

1

mn

(
E
[
X(k)
n,π

]
E [An(sk)] +

1

2
(vn −mn)

)
= E [An(sk)] +

vn −mn

2mn

(b)

≥ E [An(sk)] +
mn − 1

2
, (7)

where the equality (a) is based on the arrival-independent
condition of AIR policies, and the inequality (b) follows from
vn ≥ m2

n; note that the equality holds when the scheduling
interval is a constant mn.

It is now clear that the main challenge is to calculate
E [An(sk)]. First we have Lemma 2 (cf. proof in [8]) which
shows that {An(t), t = 1, 2...} is a Markov state process and
its steady-state stationary distribution is given below.

Lemma 2: {An(t), t = 1, 2...} is a Markov state process
with the steady-state stationary distribution given as µn(j) =
λn(1− λn)j−1, where µn(j) denotes the probability that the
steady-state of terminal n is state j (age of packet at terminal-
n equals j). �

Then the challenge of calculating E [An(sk)] is tackled by
treating E [An(sk)] as the average state value of a Markov
state process by an independent outside observer. Armed with
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Fig. 2. Age of the packet at terminal-n assuming one packet buffer (left) and
AoI at the BS (right).

this, we invoke the ASTA property [9, Theorem 3.14] which
can be seen as a generalization of the well-known PASTA
theorem to non-Poisson observers. Using the notations in [9,
Theorem 3.14], let U be {An(t), t = 1, 2...}, and N be the
counting process of the number of scheduling times before
time t. Then based on the AIR policy conditions, U and N are
independent and U is a Markov state process. The continuous
condition in [9, Theorem 3.14] follows by design of update
sequence described in Fig. 1. Therefore, we obtain

E [An(sk)] = lim
K→∞

1

K

K∑
k=1

An(sk) = E [An(t)] =
1

λn
. (8)

In other words, the time-average of random sampling (sk)
of the Markov process {An(t), t = 1, 2...} equals the steady-
state average. Combining with (7), the time-average AoI is

h̄(∞,N)
π =

1

N

N∑
n=1

h̄(∞,N)
n,π ≥ 1

N

N∑
n=1

(
E [An(sk)] +

mn − 1

2

)

=
1

N

N∑
n=1

(
1

λn
+
mn − 1

2

)
. (9)

The scheduling rate of all terminals equals one for WCNC
policies; therefore, according to the elementary renewal theo-
rem,

∑N
n=1

1
mn

= 1. It follows from the arithmetic-harmonic-
mean inequality (equality holds when mn = N , ∀n =
1, ..., N ) and (9) that

h̄(∞,N)
π ≥ 1

N

N∑
n=1

1

λn
+
N − 1

2
. (10)

The equality holds in (10) under two conditions: 1) mn =
N , ∀n = 1, ..., N ; 2) The scheduling interval is a constant mn.
These two conditions can be both satisfied with RR-ONE. For
a sanity check, RR-ONE is indeed an AIR policy. With this,
we can conclude the proof of Theorem 1.

IV. PROOF OF THEOREM 2: ASYMPTOTIC OPTIMALITY

In future massive IoT systems, the main challenge is to
accommodate a large number of terminals while maintaining
timely status updates. Hence, it is of particular interest to con-
sider the problem in the asymptotic regime where the number
of terminals grows large. Towards this end, it will be shown
in the following that RR-ONE, given its simple structure,
is asymptotically optimal among all policies with arbitrary
information and even non-causal packet arrival knowledge.

First, we obtain two AoI lower bounds and compare these
with the achievable AoI by RR-ONE; the conclusion follows
by showing that they have identical asymptotic scaling factors.

First, we introduce two lower bounds of the time-average
AoI of any feasible policies in Lemma 3 and Lemma 4. The
proofs are both straightforward by considering two genie-
aided systems wherein the AoI is always updated to one after
each scheduling, and transmissions are no longer subject to
collisions, respectively. For detailed proofs, please see [8].

Lemma 3: The time-average AoI in (1) is no less than N+1
2 ,

i.e.,

h̄(∞,N)
π ≥ N + 1

2
, ∀N = 1, 2, ..., λn ∈ [0, 1], n ∈ {1, ..., N}.�

(11)
Lemma 4: The time-average AoI in (1) is no less than

1
N

∑N
n=1

1
λn

, i.e.,

h̄(∞,N)
π ≥ 1

N

N∑
n=1

1

λn
,∀N = 1, 2, ..., λn ∈ [0, 1],

n ∈ {1, ..., N}.� (12)

It follows that the minimum time-average AoI, denoted by
h̄
(∞,N)
opt , cannot be less than either bound, i.e.,

h̄
(∞,N)
opt ≥ max

[
N + 1

2
,

1

N

N∑
n=1

1

λn

]
. (13)

After obtaining two lower bounds in Lemma 3 and 4,
combining with the achievable AoI by RR-ONE derived in
(10), we can conclude the asymptotic optimality of RR-ONE,
and the optimum scaling result follows immediately. Based
on Lemma 3, Lemma 4 and Theorem 2, it follows that
∀N,λ1, ..., λN ,

max

[
N + 1

2
,

1

N

N∑
n=1

1

λn

]
≤ h̄(∞,N)

opt ≤ 1

N

N∑
n=1

1

λn
+
N − 1

2
.

(14)
For any fixed λn, n = 1, ..., N , divide both sides of (14) by
N , and let N goes to infinity, we obtain

lim
N→∞

max
[
N+1
2 , 1

N

∑N
n=1

1
λn

]
N

=
1

2
,

lim
N→∞

1
N

∑N
n=1

1
λn

+ N−1
2

N
=

1

2
, (15)

and therefore (4) follows. Based on the same arguments, (5)
follows, concluding the proof of Theorem 2.

Corollary 2: The time-average AoI achieved by a uniformly
random scheduling policy with one-packet buffers (UN-ONE)
is at least h̄(∞,N)

UN ≥ N . �
Proof: The proof (cf. [8]) is based on Lemma 3.

Remark 1: Based on Corollary 2, the UN-ONE policy,
which in fact can be seen as a performance bound of CSMA
scheme without considering the contention time overhead, has
a much larger AoI compared with RR-ONE. In particular,
when the number of terminals grows large, the UN-ONE
policy does not achieve the optimum scaling factor and thus
is arbitrarily worse than RR-ONE. �
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V. SIMULATION RESULTS

In this section, computer simulation based experiments are
conducted to evaluate the AoI performance of scheduling
policies. Relative value iterations for average cost function
enable us to obtain the optimum performance numerically
by formulating the problem as an Markov decision process
(MDP). Note that, similar with most practical applications, the
MDP based approach suffers from the curse of dimensionality
and hence only small-scale problems can be solved thereby.
Nevertheless, we obtain the minimum time-average AoI of a
2-terminal case and compare its performance with RR-ONE.
The performance of RR-ONE is obtained by running RR-
ONE for 105 time slots and calculating the time-average AoI.
In addition, we also simulate UN-ONE which schedules a
terminal uniformly random at each time slot, and an age-
greedy policy which chooses the terminal with the largest AoI.
In fact, UN-ONE can be regarded as the CSMA scheme which
is shown to be optimal to maximize throughput with greedy
sources. The age-greedy policy is found optimal without
considering random packet arrivals [5]. It is observed from
Fig 3(a) that the performance gap between RR-ONE and the
optimum given by numerically solving the MDP is larger
with lower packet arrival rates; on the other hand, RR-ONE
achieves the optimum when λ approaches one which can be
concluded from Lemma 3. Given this gap characterization,
since RR-ONE is proved optimal among AIR policies, the
optimal scheduling policy with low packet arrival rates must
be a non-AIR policy. Specifically, the following intuition
explains this. Suppose that the probability of both terminals
having arrival packets in the same time slot is negligible when
arrival rates are sufficiently low; then the optimal policy is
immediately obvious that it should schedule the terminal with
packet arrival in each time slot; note that this policy is not an
AIR policy because the scheduling decision depends on packet
arrivals and hence terminals have to report their queue status.
The optimum AoI in this case is also obvious: it should be
the same with what is shown in Lemma 4, i.e., completely
determined by the inter-arrival time and this can be observed
from Fig 3(a). Nevertheless, it is noted that the performance
gap is bounded (within 0.5 time slots) in this 2-terminal case
by observing the RR-ONE performance and Lemma 4.

We increase the number of terminals and enter the massive
IoT regime in Fig. 3(b). The MDP-based optimal solution

is computationally intractable in this regime and hence we
adopt the myopic policy with global state information (GSI)
as an approximation of the optimum. The myopic policy lever-
ages all the global information (though no future knowledge)
to make a scheduling decision that minimizes the one-step
expected AoI cost in the MDP formulation; by comparing
it with RR-ONE helps us to understand how much GSI
benefits the AoI performance. Based on our findings, it is
even conjectured that the myopic policy is close to optimal.
Based on Fig. 3(b), it is shown that the myopic policy with
GSI outperforms RR-ONE only slightly, due to the reason that
the packet management of using one-packet buffers eliminates
most of the randomness of packet arrivals; most packets are
dropped by packet management due to staleness and hence
their randomness has no effect. The performance of UN-ONE
is also shown; it has been proved in Corollary 2 that its linear
scaling factor is 1 compared with 1/2 for RR-ONE; this can
be observed in the figure.

VI. CONCLUSIONS

In this paper, it is found that with a number of terminals
sharing a common wireless uplink and randomly generated
status packets at each terminal, the optimal AIR policy to
minimize the time-average AoI is RR-ONE, i.e., scheduling
terminals in a round-robin fashion and each terminal only
retains the most up-to-date packet. In the asymptotic regime
where the number of terminals is large, the optimum (among
all policies) time-average AoI is proved to scale linearly with
the number of terminals. The optimum scaling factor is 1

2 ,
and RR-ONE achieves it. Moreover, RR-ONE is suitable for
decentralized implementation which significantly alleviates the
signalling overhead of massive IoT systems.
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