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Abstract—Cloud gaming is promising yet poses big challenges to wireless communications, due to its stringent requirements for low

response delay and high reliability. In this paper, we propose a predictive frame transmission scheme (PFT) in cloud gaming, to predict

and pre-transmit future game frames to users. The PFTscheme takes full advantage of good network states to transmit the predicted

frames, which consequently reduces the frame loss rate (FLR) against the network dynamics. We first model a FLR minimization

problem in the single-user system with the PFTscheme, which allocates packets to carry the predicted frames. The upper and lower

bounds of FLR are derived, respectively. Then, we study the system with Markovian property, and derive the optimal packet allocation

policy via Markov Decision Process. A near-optimal policy is also proposed with low-complexity. The PFTscheme is further extended to

the multi-server multi-user scenario, in which the users are adaptively scheduled to multiple servers based on their different

requirements. Finally, we extend the policy to fit the scenario without direct knowledge of the network state by exploiting the packet loss

rate estimation. We set up a practical testbed to evaluate the proposed PFTscheme, showing the capability of decreasing the mean

FLR from 7% to 1%.

Index Terms—Mobile edge cloudlet, cloud gaming, frame prediction, Markov decision process

Ç

1 INTRODUCTION

WITH the proliferation of mobile devices, mobile game
has gained great popularity in the past several years.

According to the report by Newzoo [1], the global market of
mobile game has maintained a growth rate of 10% since
2016, and it was worth US$77:2 billion in 2020 that
accounted for 40% of the total game market. Mobile users
expect to enjoy mobile game anywhere and anytime, with
high-quality game graphics and good operating experien-
ces. However, advanced games consume intensive CPU
and GPU resources, which poses great challenges to
resource-constrained mobile devices [2]. As a promising
solution, cloud gaming is proposed to run games on cloud
servers and stream video back to mobile devices. Because of
its good potential, cloud gaming has attracted great atten-
tions from both academia [3], [4], [5] and industry [6].

With cloud gaming, the computation resources of mobile
devices are no longer bottlenecks, but the challenges
migrate from computation to communication. According to
the white paper [7] and surveys [2], [8], the real-time data

transmission is of stringent requirements to realize the high
Quality of Service (QoS) in cloud gaming, including:

� High bandwidth consumption: the download band-
width should be at least 3Mb/s.

� Low response delay: the response delay of user interac-
tions should be less than 50ms.

� High FPS and small frame loss rate: the FPS (Frames
Per Second) of video should be at least 60, and the
probability of video frame loss should be at most 1%.

With the development of 5G technologies, mobile devices
will be rich in bandwidth resources, and the download
speed can be as high as 100Mb/s [9]. But the response delay
still remains a challenge for the existing commercialized
cloud gaming platforms (e.g., Google Stadia), in which
video is streamed from remote cloud servers to users via
the Internet. Because of its long physical distance, the data
transmission over the Internet results in large delay.
According to the test on Google Stadia [10], the average
response delay of cloud gaming varies from 100ms to
300ms, which is difficult to meet the 50ms delay require-
ments of gaming.

To decrease the delay of cloud gaming, novel architec-
tures are proposed that set up gaming servers in mobile
edge cloudlets (MEC) [8], [11], as shown in Fig. 1. In MEC,
cloud servers are deployed at the edge of networks (e.g.,
base stations and access points), and connect to mobile devi-
ces via wireless networks directly. In each game frame, the
user first uploads the instruction to the edge cloud server
via the wireless network. Thereafter, game logic is run on
the server and images are rendered accordingly. Finally, the
images are streamed back to the mobile user by the wireless
network. Because MEC utilizes the cloud servers near users,
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the delay can be notably reduced compared with remote
cloud servers. In the experimental tests [8], MEC can reduce
the delay of cloud gaming to 16ms.

In the MEC-assisted cloud gaming platforms, the dynam-
ics of wireless networks become the major obstacles against
high-quality gaming experiences. The video images are
streamed to users by application-layer packets with high
FPS, which is at least 60FPS for high-quality games [7]. But
the packet loss occurs from time to time, due to the dynamic
wireless channel and network congestions. Even if the sys-
tem re-transmits packets after packet loss happens, the re-
transmitted packets might still violate the delay require-
ment. As a result, frame loss happens when mobile devices
do not receive packets in time, and the frame loss rate (FLR)
can be larger than 5% in bad network states (e.g., the wire-
less channel is bad, or the network is congested) [12]. For
mobile users, FLR is a very important metric in terms of the
gaming experiences, and users can be annoying even if FLR
is 1% [7].

1.1 Motivating Idea

In this paper, we aim at minimizing the FLR against the
dynamic packet loss in networks. Our motivating idea is
stated as follows.

In cloud gaming systems, the server deals with each
game frame as a computational task. Considering the con-
sistency of game logic, the sequential frames are highly cor-
related rather than independent tasks. In a new game
frame, the server updates the game logic based on the previ-
ous frame as well as the user instruction. The updates of
game logic have two cases. 1) If not a new instruction is gen-
erated from the user, the server will update the game logic
according to the latest user instruction. 2) Otherwise, the
server will update the instruction, and then update the
game logic accordingly. If the user instruction is not
updated or changed, the frame can be precisely predicted.
Otherwise, the previously predicted frames should be
updated accordingly.

Compared with the frame rate of gaming (e.g., 60FPS),
the update of user instruction is of a far smaller frequency
(e.g., 1Hz). Therefore, in most cases, the user instruction
does not change, and the frame can be predicted correctly
with a high probability.

Exploiting the frame correlation, we propose the predic-
tive frame transmission scheme against the dynamics of net-
works. In each frame, based on the latest user instruction,
the server processes the game logic and renders the image
of the current frame, and it also predicts the game logic and

images of future frames. Then, the predicted images will be
pre-transmitted to the users depending on the network
state. With the scheme, more images of future frames can be
forwarded to the user when the network state is good, in
case of the upcoming bad network states.

Many previous efforts [13], [14], [15], [16], [17], [18], [19]
have been devoted to studying the data transmission of
each game frame independently. Compared with these
papers, we exploit the correlation between sequential frames
against the network dynamics.

1.2 Main Contributions

Wewould like to highlight our contributions as follows.

� In the MEC-assisted cloud gaming systems, we pro-
pose the predictive frame transmission scheme, by
which the system can predict and pre-transmit
future frames to users via packet allocation. We for-
mulate the FLR minimization problem with the pro-
posed scheme in the single-user system. The upper
and lower bounds of FLR are derived, respectively.

� By modeling the system as a Markov chain, we
derive the FLR theoretically by solving the stationary
distribution. Then, we derive the optimal packet
allocation policy by Markov Decision Process
(MDP), and analyze the structure of the optimal pol-
icy. To address the curse of dimensionality in MDP,
we propose a near-optimal policy with low complex-
ity, which allocates packets to the two images that
will be displayed in the nearest future.

� We extend the proposed scheme to the multi-server
multi-user scenario. An optimization problem is for-
mulated to minimize the mean FLR of all users, by
scheduling users to edge servers as well as allocating
the computation and bandwidth resources. We pro-
pose a dynamic-programming-based algorithm to
jointly derive the optimal user schedule and resource
allocation.

� We further consider the scenario that the system
does not have any prior information about the net-
work states. In this case, based on the historical
packet loss observations, we propose a sub-optimal
packet allocation algorithm with packet loss rate
estimation.

� We set up a testbed to realize the predictive frame
transmission scheme in practical cloud gaming sys-
tems. It is shown that the maximum FLR can be
decreased from 15% to 4% and the mean FLR can be
decreased from 7% to 1% with the proposed scheme.
We also carry out extensive simulations to evaluate
the scheme.

The rest of the paper is organized as follows. In Section 2,
we summarize the related work. Section 3 introduces the
systemmodel. In Section 4, we formulate the FLR minimiza-
tion problem and analyze the bounds of FLR. In Sections 5
and 6, we study the optimal packet allocation policy in the
system with Markov model and with general model, respec-
tively. We also study the user schedule and resource alloca-
tion in the multi-server multi-user scenario. In Section 7,
experiments and simulations are presented to evaluate the
proposed scheme. The paper is concluded in Section 8.

Fig. 1. The MEC-assisted cloud gaming system.
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2 RELATED WORK

The timeliness of cloud gaming systems has lately been
widely studied [13], [14], [15], [16], [17], [18], [19]. In [13],
the authors study the age of information analytically in
Markov model based cloud gaming systems. The age metric
is then used to optimize the frame rate and lag synchroniza-
tion. Ref. [14] studies the round trip delay of cloud gaming
systems, which is optimized by controlling the data rate via
the network congestion detection. Refs. [15], [16], [17] study
the multi-objective optimization, which minimize the
energy and resource cost of the system while satisfying the
delay requirements of users. Ref. [15] is characterized by the
resource virtualization in virtual machines, [16] is character-
ized by the system with geographically distributed data
centers, and [17] focuses on the GPU resource cost of sys-
tems. Refs. [18] and [19] study a novel system that mobile
devices can not only offload gaming tasks to cloud servers,
but can also offload them to other mobile devices nearby.
Their objectives are to minimize the energy consumption of
mobile devices under the constraints of gaming delay. Ref.
[18] considers that mobile devices can communicate with
each other directly, while [19] studies an ad-hoc network.
The papers [13], [14], [15], [16], [17], [18], [19] study the gam-
ing delay in terms of each single game frame independently.
In comparison, we study the sequential frames and exploit
their correlations, so as to combat the dynamics of networks.

Server selection and resource allocation for multi-user
systems are also important in cloud gaming systems, which
have been studied by many recent papers [20], [21], [22],
[23], [24]. In [20], [21], [22], the authors study the system
that multiple users are served by multiple servers, and users
select the server for cloud gaming. Ref. [20] focuses on the
minimum rental and bandwidth costs of the system. Ref.
[21] proposes the reputation-based server selection scheme,
which can dynamically update the information of servers.
Ref. [22] proposes the server selection approaches which
can use GPU resources efficiently. Refs. [23] and [24] deal
with the resource allocation in cloud gaming systems. In
[23], the authors use the cognitive information of the cloud
gaming systems to allocate resources dynamically to users.
Ref. [24] focuses on the complex relationship among system
performances, and derives the resource allocation by
machine-learning based approaches. Compared with the
previous papers [20], [21], [22], [23], [24], our work studies
the server selection and resource allocation problem based
on the predictive frame transmission scheme.

A few papers rely on prediction to optimize the perform-
ances of cloud gaming systems [25], [26]. Ref. [25] proposes a
user action prediction approach, by which the cloud server

can predict and pre-transmit future images to users so as to
reduce the response delay of cloud gaming. Our work has
several differences, including: 1) Ref. [25] requires additional
bandwidth resources to transmit the predicted images, while
our work only exploits the bandwidth resources that are
already allocated to the user. Besides, the data transmission
in [25] is based on a fixed policy that does not consider the
network states, while our proposed approach can adaptively
allocate packets to the predicted images based on the current
network state and buffer state. 2) In [25], once the mispredic-
tion occurs, the terminals consumeGPU resources to execute
error compensation which might be challenging for mobile
devices. In comparison, in our work, mispredictions are cor-
rected by buffer update anddata transmission. Ref. [26] stud-
ies the multi-layered video coding in cloud gaming systems,
by which an image can be partitioned into multiple layers. In
each frame, the system can predict some layers of the image
before the receiving of the updated user action. In [26], the
prediction is only limited to one frame, but the images of
future frames are not predicted. In comparison, our work
focuses on the prediction and pre-transmission of multiple
future frames, considering the dynamics of networks.

3 SYSTEM MODEL

3.1 Predictive Frame Transmission Scheme

We propose a predictive frame transmission scheme in cloud
gaming systems assisted byMEC.With the prediction of future
frames, the server can pre-transmit them to users. The struc-
ture of a game frame is shown in Fig. 2a, explained as follow.

1) Instruction update: In each frame, if the user generates
a new instruction, it will be sent to the server. Other-
wise, the server will not receive any update, and it
indicates that the user maintains the instruction in
the previous frame.

2) Game logic and image renderer: Based on the latest
instruction, the server processes the game logic and
renders the image of the current frame, and it also
predicts the game logic and images of the future
frames. If the instruction does not change in the
future frames, these predicted images will be used to
display. Otherwise, these predicted images will be
deleted.

3) Image download: The server transmits the images of
the current frame and predicted frames to the user
via the wireless network. Since the bandwidth of the
network is limited, the server can only send some of
the images. Also, the bad network state may lead to
the loss of images during the transmission.

Fig. 2. The frame structure and an example of cloud gaming with predictive frame transmission.
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4) Image display: Upon the image reception, the mobile
device caches them in the buffer. At the end of each
frame, the mobile device detects if the image of the
current frame is already cached. If so, the mobile
device displays the image; otherwise, the current
frame is skipped, and a frame loss occurs. For the
images of predicted frames, the mobile device will
cache and display them at their frames, as long as
the user instruction does not change. But if the
instruction changes, they will be deleted.

With predictive frame transmission, the system can take
full advantage of good network states by transmitting the
images of future frames. When bad network states come,
although the images cannot be successfully transmitted, the
images of current frames can be displayed because they
have been cached in the user buffer already. In Fig. 2b, the
example demonstrates the predictive frame transmission
scheme. In Frames 1 and 2, the server predicts and pre-
transmits images of future frames to the user. In Frame 3,
the image cannot be downloaded due to the packet loss in
the bad network state. But the mobile device can still dis-
play the image which has already been cached in the buffer.
In Frame 5, the user instruction changes. The previously
predicted images are deleted, and newly rendered images
are re-transmitted to the mobile device.

Let t denote the index of game frames where t ¼ 1; 2; . . . .
Table 1 summarizes the main notations used throughout
this paper.

3.2 Game Logic and Image Renderer

The server consumes CPU resources to process game logic,
and consumes GPU resources to render images. We assume
that the CPU and GPU frequency of the server are FCPU and
FGPU respectively, which are known to the server. To render
one image, the consumption of CPU cycles and GPU cycles

are denoted by CCPU and CGPU respectively. CCPU and
CGPU are determined by the specific game program, and we
assume that they can be tested by the server. Accordingly,
the time consumed to process game logic and renderer for
one image is

DI ¼ CCPU

FCPU
þ CGPU

FGPU
: (1)

In one frame, constrained by the computation resources
and computing time, the server can render at most N
images including one image of the current frame and N � 1
predicted images of future frames. We assume that the total
time allocated to game logic and image renderer is DG in
each frame. Accordingly, the maximum number of images
that can be rendered in one frame is

N ¼ DG

DI

� �
; (2)

where bxc indicates the largest integer no larger than x.
Let i denote the index of the rendered images, where 1 �

i � N . If i ¼ 1, the first image indicates the one of the cur-
rent frame. If i > 1, the ith image is of the predicted frame
whose index is tþ i� 1 at the tth frame.

3.3 Data Transmission

We consider that one image is transmitted to the user in one
application-layer packet. Constrained by the bandwidth
resources of the network, the server can send at most L
packets to the user in one frame. Assume that the total
bandwidth is W , the data size of one packet is DL, and the
time period of one frame is DT . Then, L is calculated by

L ¼ WDT

DL

� �
: (3)

TABLE 1
Main Notations

Symbol Definition

t the index of game frames
N the number of images rendered in one frame, including one current image andN � 1 predicted images
i the index of the frame for the rendered images, where i ¼ 1 denotes the current image and i > 1 denotes the

predicted images
L the number of packets sent from the server in each frame
PFLR the average FLR
PPLR
t the PLR in the tth frame

M the total number of PLR states
PPLR�M
j the state space of PLR for Markov model based network, where 1 � j �M

QPLR�M
j;j0 the state transition probability from PPLR�M

j to PPLR�M
j0

PPLR�O
t the observation of PLR at the tth frame

PPPLR�O
t1:t2

the observations of PLR from the t1th frame to the t2th frame

PPLR�E
t the estimated PLR in the tth frame

P I the probability that user instruction changes
Bi a bool value indicates if the image of the ðiþ t� 1Þth frame is cached by the buffer at the tth frame
BBt BBt ¼ ðB1; B2; B3; . . . ; BNÞ that denotes the state of the buffer at the tth frame

St the state of the system, which is St ¼ fPPLR
t ; BBtg

xi the number of the packets that is allocated to the ith image
XXt XXt ¼ ðx1; x2; x3; . . . ; xNÞ that denotes the packet allocation in the tth frame
p the packet allocation policy, which denotes the mapping from St toXXt
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The application-layer packet loss rate (PLR) denotes the
probability that packets cannot be successfully received by
the mobile device within the period of one frame. The PLR is
affected by many factors, including 1) the wireless channel
state in the physical layer, 2) the congestion in the network
layer, 3) the timeout in the application layer, and so on.

In our work, we will not focus on the comprehensive
model of PLR, which is not helpful to apply the predictive
frame transmission to real systems. In contrary, we simply
use the PLR to indicate the state of the wireless network. On
one hand, PLR is dominated by the wireless channel state
and network congestions, which reflects the state of the
whole network directly. On the other hand, PLR is easy to
be measured by the system, and it is a fundamental indica-
tor that matters the image transmission and frame loss. We
assume that the PLR remains constant during each frame,
but it may change in different frames. Let PPLR

t denote the
PLR in the tth frame. We consider Markov model based net-
work and general model based network, respectively.

� Markov model based network: In Markov model based
networks, the dynamics of PPLR

t is determined by a
discrete state space Markov chain. Assume that the
total number of states is M, and the state space of
PLR is denoted by PPLR-M

j where 1 � j �M. The
state transition is denoted by QPLR-M

j0;j , that is

QPLR-M
j0;j ¼ ProbfPPLR

tþ1 ¼ PPLR-M
j jPPLR

t ¼ PPLR-M
j0 g: (4Þ

The transition between different states indicates
the dynamics of the network state. If the network is
of high state fluctuation, the state transition probabil-
ity is of a larger value. Otherwise, the network is rel-
atively constant, and the state transition probability
becomes small. The number of states and the value
of state transition probability can model networks
with different dynamics.

� General model based network: In general model based
networks, we consider that the dynamics of network
states are not known to the server. The server can
only get the PLR of previously transmitted packets.
In this case, the server samples the PLR by historical
frames, and estimates the PLR of the current frame.
Let PPPLR-O

t1:t2
denote the observations of PLR samples

from the t1th frame to the t2th frame. Based on the
observations PPPLR-O

1:t�1 , the server estimates the PLR
PPLR�E
t at the tth frame.

Markov model describes the dynamic changes of net-
works over time, which has been widely used by a number
of researchers [13], [27]. But when a user accesses a new
server, the user may not have and prior information about
the network states. In this case, we will also study the net-
works based on general models, so that our proposed
scheme can be easily applied to real systems.

3.4 Operations on Mobile Devices

The functions of the mobile device are to upload user
instruction and to display images. In each frame, the proba-
bility that user instruction has changed compared with the
previous frame is denoted by P I. At the start of one frame,
if the mobile device detects the change of the instruction, it
will upload the update to the server; otherwise, it will not

send any data. We assume that the instruction update can
always be received by the server in time, because its data
size is very small, typically 10 bytes.

The downloaded images are cached in the buffer of the
mobile device. Let BBt ¼ ðB1; B2; B3; . . . ; BNÞ denote the state
of the buffer in the tth frame. Bi is a bool variable that Bi 2
f0; 1g, where i ¼ 1; 2; . . . ; N . If Bi ¼ 1, it denotes that the ith
image is cached in the buffer; otherwise, Bi ¼ 0 and the ith
image is not cached. According to the definition of i, B1

indicates the image state of the current frame; 8i > 1, Bi

indicates the image state of a predicted frame where the
index of its frame is tþ i� 1 at the tth frame.

At the end of each frame, the image of the current frame
is displayed if B1 ¼ 1; otherwise, the display of the image is
skipped and a frame loss happens. 8i > 1 and i < N , Bi is
replaced by the image of Biþ1, because one frame has
passed and the index of predicted frames is decreased by
one. We assume that the user will always report its buffer
state to the server. But the server cannot get the state as
soon as each packet is received or lost because it takes time
to transmit the report. Therefore, we assume that the server
gets the synchronized buffer state at the end of each frame.

3.5 Packet Allocation Policy

The system state includes the network state and the buffer
state of images. If the network state is based on Markov
model, it is acquired directly; otherwise, the systemwill esti-
mate the network state based on the historical observations.
Let St denote the state of the system at the tth frame, where

St ¼
fPPLR-M

j ; BBtg;Markov model based network.

fPPLR�E
t ; BBtg;General model based network.

(
(5)

Let XXt ¼ ðx1; x2; x3; . . . ; xNÞ denote the packet allocation
in the tth frame. xi indicates the number of packets that is
allocated to the ith image, which satisfies xi 2 ½0; L�. Con-
strained by the total number of packets, the following
inequality holds in any frame.XN

i¼1
xi � L: (6)

At the tth frame, given the current PLR PPLR
t and the

packet allocationXXt, the transition of buffer state is given by

Bi ¼
Biþ1; The frame index is decreased by one; ð7aÞ
0; With prob. P I; ð7bÞ
1; With prob. 1� ðPPLR

t Þxi ; ð7cÞ

8><>:
where the state transition should be sequentially executed
from (7a) to (7c). Eq. (7a) denotes the index of predicted
frames is decreased by one, because one frame has passed.
Eq. (7b) denotes the user instruction has changed, and the
previously predicted images are deleted. Eq. (7c) denotes
that xi packets are allocated to the ith frame, and the success
transmission probability is derived accordingly.

The system determines the packet allocation based on the
system state in each frame. The packet allocation policy p is
defined as the mapping from the system state St to the
packet allocationXXt, which is

p : St�!XXt: (8)
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If the network state is based on Markov model, p is a
Markov policy that relies on the system state in the tth
frame only. Otherwise, if the network state is based on the
general model, p is a history dependent policy.

4 PROBLEM FORMULATION AND ANALYSIS

4.1 Frame Loss Rate Minimization

Our objective is to minimize the average FLR. In each frame,
we assume that the user gets a reward R if the image of the
current frame is displayed. The utility function is defined as
the long-term reward

U ¼ lim
T!1

1

T

XT
t¼1

RIðB1 ¼ 1jBBtÞ½ �; (9)

where

IðxÞ ¼ 1; if the condition x holds;

0; otherwise:

�
(10)

To maximize the utility, the optimization problem is for-
mulated as Problem P1.

max
p

U ðP1Þ

s:t:
XN
i¼1

xi � L; 8XXt where t ¼ 1; 2; . . . ; ðC1.1Þ

where (C1.1) indicates the constrained number of packet
transmission in each frame.

Let PFLR denote the FLR, which is the probability that
frame loss occurs.

PFLR ¼ ProbfB1 ¼ 0g; 8t: (11)

According to the Law of Large Numbers, the utility is a
function of FLR, where,

U ¼ Rð1� PFLRÞ: (12)

Thus, Problem P2 is an equivalent problem of Problem
P1, which is

min
p

PFLR ðP2Þ
s:t: C1.1:

Because Problem P1 and Problem P2 are equivalent, the
solution to either of them leads to the minimization of FLR,
which denotes the optimal policy p.

4.2 Upper Bound of FLR

We consider a special case that the cloud gaming system
does not predict any future frames. In this case,N ¼ 1 holds
in all frames. All packets are allocated to the unique ren-
dered image in each frame, which is a subset of the policies
for the condition ofN > 1. Thus, the FLR of the system per-
forms the upper bound.

In the system with Markov model based networks, let
PPPLR-M-S

j ¼ ðPPLR-M-S
1 ; . . . ; PPLR-M-S

N Þ denote the stationary
distribution of all states, where PPLR-M-S

j indicates the station-

ary distribution for the PLR of PPLR-M
j . LetQPLR-M denote the

probability transition matrix for different PLRs. The station-
ary distribution can be derived by solving the linear equations

as follows,

PPPLR-M-S
j ¼ QPLR-MPPPLR-M-S

j : (13)

Accordingly, the upper bound of FLR is

PFLR
Upper ¼

XM
j¼1

PPLR-M-S
j ðPPLR-M

j ÞL: (14)

In the system with general model based networks, the
distribution of PPLR

t can be derived by sampling enough
PLRs. Based on the distribution, the upper bound of FLR is

PFLR
Upper ¼

Z 1

0

ProbfPPLR
t ¼ xgxL dx: (15)

4.3 Lower Bound of FLR

We consider an ideal case that the system gets an immediate
feedback of packet transmission as soon as the transmission is
finished, nomatterwhether the packet is received by the user or
is lost.With the assumption, the system can allocate each packet
before the transmission of the packet, based on the real-time
buffer state of the mobile device. In comparison, without the
assumption, all packets are allocated simultaneously before their
transmission, because the buffer state is synchronized at the end
of each frame. The FLRwith the assumption performs the lower
bound, because it gets the superset of information compared
with the systemwithout the assumption.We have the following
proposition for the optimal packet allocation policy.

Proposition 1. In the system that always gets the feedback of
packet transmission immediately, the optimal packet allocation
policy is as follow. At the beginning of packet transmission, the
system finds the minimum i that Bi ¼ 0, and it sends the ith
image in this packet.

Proof. SeeAppendixA,which can be found on theComputer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2022.3149056. tu
Based on the optimal policy, the images of smaller i will

be transmitted earlier compared with images of larger i.
Thus, Bi � Bi0 always holds where i < i0. Let bBBk denote the
state of the buffer, that is

bBBk ¼ ðB1 ¼ 1; . . . ; Bk ¼ 1; Bkþ1 ¼ 0; . . . ; BN ¼ 0Þ; (16)

where Bi ¼ 1 holds for i � k and Bi ¼ 0 holds for i > k.
In the tth frame, given the PLR PPLR

t , the state transition
probability from bBBk0 to bBBk is given by

QLower
k0;k ðPPLR

t Þ

¼ ð1� P IÞIðl > 0Þ l

L

� �
ðPPLR

t ÞL�lð1� PPLR
t Þl (17)

þP I k

L

� �
PPLR
t

� �L�k
1� PPLR

t

� �k
; (18)

where l ¼ k� k0 þ 1. Eq. (17) indicates the state transition
probability that user instruction does not change, and (18)
indicates the state transition probability that user instruc-
tion changes.
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Considering the distribution of PPLR
t , the total probabil-

ity of state transition is

QLower
k0;k ¼

PM
j¼1 P

PLR-M-S
j QLower

k0;k ðPPLR-M
j Þ; ð19aÞR 1

0 ProbfPPLR
t ¼ xgQLower

k0;k ðxÞ dx; ð19bÞ

8<:
where (19a) indicates the system with Markov model based
network, and (19b) indicates the system with general model
based network.

As a result, the states of buffer state can be modelled as a
Markov chain. Let PPLower-S ¼ ðPLower-S

0 ; . . . ; PLower-S
N Þ denote

the stationary distribution of all states, where PLower-S
k indi-

cates the stationary distribution for the state bBBk. Let Q
Lower

denote the matrix of transition probabilities for all states.
The stationary distribution can be derived by solving the
linear equations as

PPLower-S ¼ QLowerPPLower-S: (20)

Accordingly, the lower bound of FLR is

PFLR
Lower ¼ PLower-S

0 ; (21)

which represents the probability that the mobile device does
not cache any image at the end of each frame.

4.4 Cloud Gaming Metrics

As introduced in Section 1, the QoS of cloud gaming is
based on many metrics, including FPS, FLR, the response
delay, and the bandwidth usage. FPS and FLR jointly deter-
mine the smoothness of gaming [28], and therefore the high
FPS and low FLR are directly required by users. In this part,
we continue to show that the response delay and bandwidth
usage are also highly related to FLR and PLR.

4.4.1 Mean Round Trip Delay

The round trip delay TRTT is defined as the time duration
from the update of a user instruction to the update of the
corresponding image. Thus, TRTT indicates the response
delay of cloud gaming.

The time period of a game frame is DT . If one image is
updated at the end of the frame that a new user instruction
is received, TRTT ¼ DT . Otherwise, TRTT depends on the
number of frame loss since the user instruction. Accord-
ingly, the mean value of TRTT is based on the distribution of
FLR, which is given by

EðTRTTÞ ¼
Z 1

0

ProbfPFLR ¼ xg
X1
k¼1

kð1� xÞxðk�1Þ
" #

DT dx:

(22)

4.4.2 Packet Overhead of Predicted Frames

The network consumes bandwidth to transmit the predicted
frames. The packet overhead of the predicted frames
depends on the packet allocation policy p. Given a policy p

and the distribution of system states, the packet overhead is

Op ¼
X
St

ProbfStgOpðStÞ; (23)

where

OpðStÞ ¼ OpðSt;XXtÞ ¼
XN
i¼2

xi: (24)

In Eq. (24), the packet allocation XXt is jointly determined
by the system state St and the policy p. The number of pack-
ets allocated to the current frame is x1, and other packets are
allocated to the predicted frames. Thus, the packet overhead
is based on the sum from x2 to xn.

5 OPTIMAL POLICY FOR CLOUD GAMING SYSTEMS

WITH MARKOV MODEL BASED NETWORK

In this section, we study the optimal packet allocation policy
of the predictive frame transmission scheme, based on Mar-
kov model of the network. We first analyze the FLR. Then,
we use MDP to derive the optimal policy. We also propose
a near-optimal policy which greatly decreases the algorithm
complexity. Finally, we extend the predictive frame trans-
mission scheme to the multi-server multi-user scenario.

5.1 Theoretical Analysis on Frame Loss Rate

With the Markovian network states, the entire system can be
modeled as a discrete-time and discrete-space Markov
chain. In the tth frame, the system state St is determined by
a N þ 1 dimension vector ðPPLR-M

j ; B1; . . . ; BNÞ, where
PPLR-M
j indicates the network state and Bi indicates the

buffer state of the ith image. For simplicity, we define the
state as

SSCM
j;B1;...;BN

¼ ðPPLR-M
j ; B1; . . . ; BNÞ: (25)

Because the system is Markov, the policy p determines
the packet allocation in each frame, based on the current
system state only.

p : SSCM
j;B1;...;BN

�!ðx1; . . . ; xNÞ: (26)

For the policy p, the state transition probability from

SSCM
j0;B0

1
;...;B

0
N

to SSCM
j;B1;...;BN

is

QCM
p ðSSCM

j0;B0
1
;...;B

0
N

; SSCM
j;B1;...;BN

Þ
¼ ProbfSSCM

j;B1;...;BN
jSSCM

j0;B0
1
;...;B

0
N

; ðx1; . . . ; xNÞg
¼ ð1� P IÞQM

j0;j
Y
CCM
1

½1� ðPPLR-M
j Þxi �

Y
CCM
2

ðPPLR-M
j Þxi

þ P IQM
j0;j
Y
CCM
3

½1� ðPPLR-M
j Þxi �; (27)

where

CCM
1 : 8i; that Bi ¼ 1 and B

0
iþ1 ¼ 0;

CCM
2 : 8i; that Bi ¼ 0 and xi > 0;

CCM
3 : 8i; that Bi ¼ 1:

CCM
1 denotes the condition that the ith image is successfully

received by the user; CCM
2 denotes the condition that the ith

image is lost during the transmission; CCM
3 denotes the con-

dition that the instruction has changed and the ith image is
re-transmitted to the user.

3780 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 7, JULY 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on September 28,2023 at 02:59:57 UTC from IEEE Xplore.  Restrictions apply. 



With the state transition probability, we can get the sta-
tionary distribution of the Markov chain. Let PPCM-S

p denote
the stationary distributions of the state space, which is a
vector of elements PCM-S

p ðSSj;B1;...;BN
Þ; 8j; B1; . . . ; BN . Let

QCM
p denote the state transition matrix of the state space.

The stationary distribution can be solved by

PPCM-S
p ¼ QCM

p PPCM-S
p : (28)

The FLR is the sum of the stationary state probability that
B1 ¼ 0, which is

PFLR�CM
p ¼

X
8j;B2;...;BN ;andB1¼0

PCM-S
p ðSSj;B1;...;BN

Þ: (29)

Therefore, the FLR can be derived theoretically with pol-
icy p. Taking the FLR to the Problem P2, we can further
optimize p so as to minimize the FLR, which is

min
p

PFLR�CM
p : ðP3Þ

In the following part, we will use MDP to get the optimal
solutions.

5.2 Optimal Policy by Markov Decision Process

Based on the Markov system, the FLR minimization prob-
lem evolves as a discrete-time and discrete-space MDP. We
model the MDP problem with the following tuples.

� State space: St ¼ SSCM
j;B1;...;BN

.
� Action space:XXt ¼ ðx1; . . . ; xNÞ.
� State transition:

QCM
p ðSt; Stþ1Þ ¼ QCM

p

	
SSCM
j0;B0

1
;...;B

0
N

; SSCM
j;B1;...;BN



:

� Reward:

RtðSSCM
j;B1;...;BN

Þ ¼ R; If B1 ¼ 1:

0; If B1 ¼ 0:

�
The value function of a state indicates the expected sum

of the current and potential rewards. Let g denote the dis-
count factor of the potential reward, where 0 � g < 1.
Thus, the value function of St based on the policy p is

VpðStÞ ¼ Ep½RtðStÞ þ gVpðStþ1ÞjSt�: (30)

Taking the state space and state transition probability to
(30), the Bellman equation of the value function is

Vp

	
SSCM
j;B1;...;BN



¼ Rt

	
SSCM
j;B1;...;BN



þ g

X
8j0;B0

1
;...;B

0
N

QCM
	
SSCM
j;B1;...;BN

; SSCM
j0;B0

1
;...;B

0
N



Vp

	
SSCM
j0;B0

1
;...;B

0
N



: (31)

The optimal policy p� maximizes the value functions.
Because the maximization of reward (Problem P1) and the
minimization of FLR (Problem P2) are equivalent, p� can
actually minimize the FLR.

p� ¼ argmax
p

Vp

	
SSCM
j;B1;...;BN



: (32)

The maximum value function based on p� is defined as

V�
	
SSCM
j;B1;...;BN



¼ Vp�

	
SSCM
j;B1;...;BN



: (33)

We use value iteration to derive the optimal policy, as
described in Algorithm 1.

Algorithm 1. Value Iteration Algorithm

1: for each j; B1; . . . ; BN do

Vp0ðSSCM
j;B1 ;...;BN

Þ ¼ 0

2: end for
3: repeat
4: for each j; B1; . . . ; BN do

5: VpkðSSCM
j;B1;...;BN

Þ ¼
6: maxðx1;...;xnÞRtðSSCM

j;B1 ;...;BN
Þþ

7: g
P
8SS0 Q

CMðSSCM
j;B1;...;BN

; SS0ÞVpk�1ðSS0Þ
8: end for
9: D jVpkðSSCM

j;B1 ;...;BN
Þ � Vpk�1ðSSCM

j;B1;...;BN
Þj

10: until D � a

11: Return policy p�

In Algorithm 1, the termination condition for the itera-
tion is that the change of value function D is not larger the
threshold a. We prove the convergence of Algorithm 1 as
follow.

Proposition 2. The Algorithm 1 converges to the optimal
solution.

Proof. See Appendix B, available in the online supplemen-
tal material. tu
We further analyze the structure of the optimal policy.

First, we define the packet-based value increment function,
which denotes the marginal gain of value function by allo-
cating one more packet to a specific image. Given the cur-

rent state St ¼ SSCM
j;B1;...;BN

and the packets that have already

been allocated bXXt ¼ ðbx1; . . . ; bxNÞ, the packet-based value
increment function of the ith image is defined as

DV Packet
� ðijSt; bXXtÞ

¼ ½ðPPLR-M
j Þbxi � ðPPLR-M

j Þbxiþ1�
½V�ðStj bXXt;Bi ¼ 1Þ � V�ðStj bXXt;Bi ¼ 0Þ�; (34)

where V�ðStjbXXt;Bi ¼ bÞ denotes the expectation of value
function that packets are allocated by bXXt and Bi ¼ b.
Eq. (34) indicates that DV Packet

� ðijSt; bXXtÞ can be obtained by
the value function, by allocating the next packet to the ith
image. With more packets allocated to the same image, its
packet-based value increment function becomes smaller.

With the packet-based value increment function, the
unique structure of the optimal policy is stated as follow.

Proposition 3. The optimal packet allocation policy p� is a
L-step greedy policy based on DV Packet

� ðijSt; bXXtÞ. In each step,
the policy allocates one packet to the ith image that maximizes
DV Packet

� ðijSt; bXXtÞ. Then, bXXt is updated based on bXi ¼ bXi þ 1,

and DV Packet
� ðijSt; bXXtÞ is updated based on the bXXt.
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Proof. See Appendix C, available in the online supplemen-
tal material. tu
In Proposition 3, we demonstrate how the system allo-

cates packets to all rendered images in each frame. The opti-
mal policy is of L steps, because it allocates one packet in
each step and totally L packets are to be allocated. In one
step, the system greedily allocates the packet to the image
that has the maximum marginal gain of value function,
which is actually determined by DV Packet

� ðijSt; bXXtÞ. As one
packet is allocated, the value increment functions change,
and the system should re-calculate them. After L steps, all
packets are allocated, leading to the maximum value
function.

5.3 Nearest-Future-Based Two-Image Transmission
Policy

The optimal policy can be derived by MDP, but the size of
the policy space is LþN�1

N�1
� �

, which increases as a factorial
function with increasing N and L. This results in the curse
of dimensionality in solving MDP problems [29]. In this
part, we design a policy that has the near-optimal perfor-
mance with low complexity.

First, we define the image-based value increment func-
tion DV Image

� ðijStÞ. Given the system state St ¼ SSCM
j;B1;...;BN

that Bi ¼ 0, DV Image
� ðijStÞ denotes the increment of value

function by making Bi ¼ 1. Concretely,

DV Image
� ðijStÞ

¼ V�ðSSCM
j;B1;...;Bi¼1;...;BN

Þ � V�ðSSCM
j;B1;...;Bi¼0;...;BN

Þ; (35)

which indicates the value obtained by successfully transmit-
ting the ith image to the user. Because the optimal policy
maximizes the value function, DV�ðijStÞ reveals the priority
for transmitting the ith image. If DV Image

� ðijStÞ is larger, the
ith image is of higher priority to be transmitted to the user.

Proposition 4. For St ¼ SSCM
j;B1;...;BN

, 8j; B1; . . . ; BN , if i < i
0
,

the following inequation holds:

DV Image
� ðijStÞ > DV Image

� ði0 jStÞ: (36)

Proof. See Appendix D, available in the online supplemen-
tal material. tu
Proposition 4 indicates that the value increment of an

image becomes larger, if its frame index is smaller. In other
words, the image to be displayed in a nearer future frame is
of higher priority. This makes sense. Because i < i

0
, the i

0
th

image will be displayed later compared with the ith image.
Thus, the i

0
th image has a larger probability to be deleted,

due to the instruction change. Even if the instruction does
not change, the i

0
th image has more frames to wait for trans-

mission compared with the ith image.
We now consider a special case that the system only allo-

cates packets to two images. In this condition, we have the
following proposition for the optimal packet allocation
policy.

Proposition 5. Consider any state that St ¼ SSCM
j;B1;...;BN

. If all
packets are allocated to the ith image and i

0
th image only, by

relaxing xi and xi0 as continuous variables, the optimal packet

allocation problem is convex. The optimal solution is based on
the water-filling structure, which is

xWL
i ¼ �� � log PPLR-M

j
ðV2 � V3Þ;

xWL
i0 ¼ �� � log PPLR-M

j
ðV1 � V3Þ;

8<: (37)

where

V1 ¼ DV Image
� ðijStÞ;

V2 ¼ DV Image
� ði0 jStÞ;

V3 ¼ DV Image
� ði; i0 jStÞ;

�� ¼ 1
2 ½Lþ log PPLR-M

j
ðV1 � V3ÞðV2 � V3Þ�:

8>>>>><>>>>>:
(38)

Proof. See Appendix E, available in the online supplemen-
tal material. tu
In Proposition 5, the optimal packet allocation can be

derived in closed-form, if all packets are allocated to two
images only. The optimal packet allocation is of the water-
filling structure. Although the Proposition 5 relax xi and xi0
as continuous variables, it is easy to extend them to integer
variables. Because the value function is convex with respect
to xi and xi0 , the optimal packet allocation is either the floor
or ceil of xi and xi0 .

Inspired by Proposition 4 and Proposition 5, we propose the
nearest-future-based two-image transmission policy. In each
frame, the policy only allocates packets to two images. The two
images are the ones that are of the smallest frame index (of the
nearest future), and are not yet received by the users. Thereaf-
ter, packets are allocated to the two images by the water-filling
structure. The corresponding policy is shown inAlgorithm2.

Algorithm 2. Nearest-Future-Based Two-Image Trans-
mission Algorithm

1: for each j; B1; . . . ; BN do

Vp0ðSSCM
j;B1;...;BN

Þ ¼ 0

2: end for
3: repeat
4: for each j; B1; . . . ; BN do

Get i and i
0
of the largest DV Image

� ðijSSCM
j;B1;...;BN

Þ
Get xi and xi0 based on water-filling.
Compare two policies pA

k ¼ ðdxie; bxi0 cÞ and
pB
k ¼ ðbxic; dxi0 eÞ, and

VpkðSSCM
j;B1;...;BN

Þ ¼ maxfpA
k
;pB

k
g RtðSSCM

j;B1 ;...;BN
Þþ

g
P
8SS0 Q

CMðSSCM
j;B1 ;...;BN

; SS0ÞVpk�1ðSS0Þ
5: end for
6: D jVpkðSSCM

j;B1 ;...;BN
Þ � Vpk�1ðSSCM

j;B1;...;BN
Þj

7: until D � u

8: Return policy p�

Algorithm 2 has good performance as well as low com-
plexity. In Algorithm 1, all the different packet allocations
are compared in each iteration, and the number of the action
space is LþN�1

N�1
� �

. In comparison, Algorithm 2 can derive the
optimal packet allocation by water-filling directly, which

decreases the number of compared actions from LþN�1
N�1

� �
to

2. Because Algorithm 2 emphasizes on the most important
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two images for transmission, we will show that it has a
near-optimal performance in Section 7.

Why two-images, yet not one-image? If all packets are allo-
cated to one image, only the image of the current frame can be
transmitted to the user in each frame. In this case, the system
degrades to the one without predictive frame transmission.
Why two-images, yet not three-images? If all packets are allo-
cated to three images, the optimal packet allocation problem
is non-convex, and the system should compare all the differ-
ent packet allocations. As a result, the number of the action
space becomes a factorial function toN andL.

5.4 Extension to the Multi-Server
Multi-User Scenario

In the previous analysis, we mainly focus on the single-user
system. Besides, the multi-user scenario is also important
that multiple edge cloudlets can adaptively serve users in
terms of load balancing, which has attracted great attentions
in many papers [20], [21], [22]. Thus, in this part, we extend
the proposed predictive frame transmission scheme to the
multi-server multi-user scenario.

As shown in Fig. 3, totally KS edge cloud servers can off-
load the computation from KM mobile devices. Let kS and
kM denote the index of the edge cloud server and the mobile
device, respectively. Each mobile device connects to one
edge server, and one server can serve multiple mobile devi-
ces simultaneously.

For the kMth mobile device, the FLR is denoted by PFLR
kM

.
Let PPLR

kS;kM
denote the network state between the kSth server

and the kMth mobile device, which is assumed to be known
to the system. Thus, PFLR

kM
is a function of p, PPLR

kS;kM
, N and L.

Because p can be derived by Algorithm 1 and PPLR
kS;kM

is
known, PFLR

kM
is actually determined by N and L. N is a

function of the CPU frequency FCPU and the GPU frequency
FGPU, and L is a function of the bandwidth resources W .
Accordingly, PFLR

kM
is a function based on FCPU, FGPU and

W , that is

PFLR
kM

¼ FFLR N;Ljp; PPLR
kS;kM

	 

¼ FFLR FCPU; FGPU;W

���p; PPLR
kS;kM

	 

: (39)

To serve multiple users, the system should jointly deter-
mine: 1) User schedule: how to schedule users to different
edge servers; 2) Resource allocation: how to allocate the CPU
frequency, GPU frequency and bandwidth resources of
each edge server to the multiple users. For the kSth server,

assume that the total CPU frequency is FCPU�Max
kS

, the total
GPU frequency is FGPU�Max

kS
, and the total bandwidth

resources are WMax
kS

. Let YY kM ¼ ½y1;kM ; . . . ; ykS ; kM; . . . ; yKS;kM �
indicate the user schedule of the kMth mobile device, where
ykS;kM ¼ 1 denotes the schedule to the kSth server and
ykS;kM ¼ 0 otherwise. Let FCPU

kS;kM
, FGPU

kS;kM
and WkS;kM indicate

the CPU frequency, GPU frequency and bandwidth resour-
ces allocated to the kMth mobile device in the kSth server,
respectively. To minimize the mean FLR of all users, the
optimization problem is

min
1

KM

XKM

kM¼1
PFLR
kM

: ðP4Þ

Based on the user schedule and resource allocation, Prob-
lem P4 can be transformed into Problem P5, which is pre-
sented as follow.

minYY kM
;FCPU

kS ;kM
;FGPU

kS ;kM
;WkS ;kM

XKS

kS¼1

XKM

kM¼1
IðykS;kM ¼ 1Þ

FFLRðFCPU
kS;kM

; FGPU
kS;kM

;WkS;kM jp�; PPLR
kS;kM
Þ ðP5Þ

s:t:
XKS

kS¼1
ykS;kM ¼ 1; 8kM; C5.1

XKM

kM¼1
IðykS;kM ¼ 1ÞFCPU

kS;kM
� FCPU�Max

kS
; 8kS; C5.2

XKM

kM¼1
IðykS;kM ¼ 1ÞFGPU

kS;kM
� FGPU�Max

kS
; 8kS; C5.3

XKM

kM¼1
IðykS;kM ¼ 1ÞWkS;kM �WMax

kS
; 8kS; C5.4

where (C5.1) denotes that one mobile device is scheduled to
one edge server, (C5.2) and (C5.3) indicate the constrained
CPU and GPU frequency of each edge server respectively,
and (C5.4) indicates the constraint of bandwidth resources.

Problem P5 is a mixed integer nonlinear program
(MINLP) problem. We propose Algorithm 3 to jointly derive
the optimal user schedule and resource allocation. The algo-
rithm compares all different user schedules under the con-
straint (C5.1). For a specific user schedule, each edge server
allocates resources to the served mobile devices. Let YY kS ¼
½ykS;kMð1Þ; . . . ; ykS ;kMðGkS

Þ� denote the users scheduled to the
kSth server, where totally GkS users are served by the server.

Under a user schedule, the optimal resource allocation
can be derived by dynamic programming. The algorithm
decomposes the resource allocation of each server into GkS

stages. In each stage, the algorithm will consider serving a
new user, and all served users are jointly considered after
GkS stages. Let gkS denotes the index of each stage. The
value function of the dynamic programming is defined as
VDPðgkS ; fCPU; fGPU; wÞ. When the edge server is of the CPU
frequency fCPU, GPU frequency fGPU and bandwidth
resources w, VDPðgkS ; fCPU; fGPU; wÞ denotes the minimum
sum of FLR from the first user to the gkS th user. The corre-
sponding resource allocation is defined as RkSðgkS ; fCPU;
fGPU; wÞ.

Fig. 3. The multi-server multi-user scenario.
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In the gkS th stage, the kMðgkSÞth user will be taken into
consideration. The algorithm compares all different possible
resource allocations for the user, and VDPðgkS ; fCPU;
fGPU;WÞ is updated by the minimum one. The transition
function of the dynamic programming is given by

VDPðgkS ; fCPU; fGPU; wÞ
¼ min

f̂CPU;f̂GPU;ŵ
VDPðgkS � 1; fCPU�f̂CPU; fGPU�f̂GPU; w�ŵÞ

þ FFLRðf̂CPU; f̂GPU; ŵjp�; PPLR
kS;kMðgkS Þ

Þ: (40)

In each stage, 8fCPU; fGPU; w that meets the constraints
fCPU � FCPU�Max

kS
, fGPU � FGPU�Max

kS
, and w �WMax

kS
(the

constraints (C5.2)-(C5.4)), VDPðgkS ; fCPU; fGPU; wÞ and
RkSðgkS ; fCPU; fGPU; wÞ will be updated by the transition
function. This indicates the minimum FLR for any given
amount of resources at the stage.

After GkS stages, all served users are considered, and
VDPðGkS ; F

CPU�Max
kS

; FGPU�Max
kS

;WMax
kS
Þ indicates the mini-

mum FLR with the total resources. The corresponding opti-
mal resource allocation is RkSðGkS ; F

CPU�Max
kS

; FGPU�Max
kS

;
WMax

kS
Þ. Indeed, the minimum FLR and the resource alloca-

tion are based on the specific user schedule. By comparing
all of the different user schedules, Algorithm 3 can derive
the optimal user schedule and resource allocation jointly.

Algorithm 3. Dynamic-Programming-Based Algorithm
for the Optimal User Schedule and Resource Allocation

1: for each fYY 1; . . . ; YY KM
g under (C5.1) do

2: for each kS do
3: for gkS ¼ 1; . . . ; GkS do

4: for each fCPU; fGPU; w under (C5.2)-(C5.4) do
5: Update VDPðgkS ; fCPU; fGPU; wÞ by (40)
6: Update RkSðgkS ; fCPU; fGPU; wÞ
7: end for
8: end for
9: end for
10: end for

In the multi-server multi-user scenario, the system can
benefit from load balancing, and serve different users in
terms of their different resource requirements and network
states. For users with high computation requirements, the
system will allocate more CPU and GPU frequency. For
users with bad network states, the system will allocate more
bandwidth resources. Even if the users are of relatively high
mobility, the system can dynamically schedule these users
to different edge servers based on the network state
changes. In Section 7, we will show that the optimal user
schedule and resource allocation can efficiently reduce the
mean FLR of multiple users.

6 OPTIMAL POLICY FOR CLOUD GAMING SYSTEMS

WITH GENERAL MODEL BASED NETWORK

In this section, we study the packet allocation policy for the
system in which the network state is based on general mod-
els. Because the model does not rely on any prior informa-
tion of network states, the policy can be easily applied to
practical cloud gaming systems.

6.1 Packet Loss Rate Estimation

The packet allocation policy depends on the network state
and the buffer state jointly. The buffer state is reported by
the user in each frame. But with the general model based
networks, the PLR is not known to the system directly.
Therefore, the system gets the historical PLR samples, and
estimates the PLR of the current frame based on the histori-
cal observations. Each sample of PLR is defined as the PLR
over a period of time. In this paper, for simplicity, we
assume that a sample denotes the PLR in one frame, which
is derived from the L transmitted packets in the frame. To
extend our method to practical systems, a sample can be
derived from several frames rather than one, so that it can
be more precise when L is relatively small.

There are two possibilities for PLR in each frame. First of
all, the PLR remains constant as the previous frame. Second
of all, the PLR has changed compared with the previous
frame. Thus, the estimation of PLR is actually the detection
of the change of PLR, which is an online change point detec-
tion problem [30]. We use Bayesian approaches to solve the
PLR estimation problem.

In the tth frame, the observations of PLRs are from the 1st
frame to the ðt� 1Þth frame, which are denoted by PPPLR-O

1:t�1 .
Let rt denote the number of frames since the last change of
PLR. Let PðrtjPPPLR-O

1:t�1 Þ denote the distribution of rt given the

observations PPPLR-O
1:t�1 . Thus, the estimation of PLF is derived

by full probability formula, which is

PPLR�E
t ¼

X
rt

PðrtjPPPLR-O
1:t�1 Þ

1

rt

Xt�1
n¼t�rt

PPLR-O
n

 !" #
: (41)

The distribution of PðrtjPPPLR-O
1:t�1 Þ can be calculated recur-

sively as follow.

PðrtjPPPLR-O
1:t�1 Þ ¼

X
rt�1

Pðrt�1jPPPLR-O
1:t�2 ÞPðrtjrt�1; PPPLR-O

1:t�1 Þ: (42)

To summarize, at the end of the ðt� 1Þth frame, the his-
torical observations PPPLR-O

1:t�1 is updated by the newest sam-
pled PLR. Then the distribution of rt is updated by (42),
which denotes the number of frames since the last change
of PLR. Finally, the system can derive the estimated PLR at
the tth frame based on (41).

6.2 PLR-Estimation-Based Packet Allocation Policy

In each frame, the server allocates packets based on the
buffer state and the estimated PLR. The whole procedure is
shown in Algorithm 4. After PLR estimation, Algorithm 4 is
used to derive the packet allocation, where the total number
of network states is setM ¼ 1 and PLR is PPLR�E

t .

Algorithm 4. PLR-Estimation-Based Packet Allocation
Algorithm

1: In the tth frame:
2: Get the observation PPLR-O

t�1
3: Update rt based on PPPLR-O

1:t�1
4: Estimate PPLR�E

t based on rt and PPPLR-O
1:t�1

5: M  1 and PPLR-M
1  PPLR�E

t

6: Get the policy p by Algorithm 1
7: Allocates packets based on p and BBt
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Algorithm 4 can be applied to any system that does not
have the prior information about network states. Although
the estimated PLR is not as precise as the system that knows
PLR directly, the PLR-estimation-based packet allocation
policy performs well as validated by our experiments and
simulations.

7 PERFORMANCE EVALUATION

In this section, we first set up a practical cloud gaming
testbed, and test the experimental performances. Then, we
present more results from extensive simulations.

7.1 Testbed Setup

The cloud gaming testbed consists of a personal computer
(i7-8700K CPU and GTX1080Ti GPU) as the edge cloud
server, a TPlink WIFI router (3x3 MIMO with the rate of
450Mbps) as the access point, and a smart phone for the
user. The FPS of cloud gaming is 60, and the frequency of
user instruction change is 1Hz. In each frame, the server
renders 5 JPEG images and sends 3 packets.

We use the Unity gaming engine to implement the pro-
grams on the server and smart phone, as shown in Fig. 4.
The user operates the joystick on the smartphone, to control
the movement of the object. In each frame, the server ren-
ders one image of the current frame and 4 images of pre-
dicted frames, based on the latest user instruction. In the
figure, as the joystick instruction is to move down, the
images of predicted frames are forward in the downward
direction, compared with the image of the current frame.

The server transmits the images to the smart phone by
our proposed predictive frame transmission scheme, and
records the packet transmission results. The average PLR is
updated every 60 frames. The server derives the FLR with
and without the predictive frame transmission, as shown by
the FLR-PFT and FLR in Fig. 4.

7.2 Experiment Results

The data sizes of images depend on the resolution, as sum-
marized in Table 2.

Table 3 presents the experiment results. In the experi-
ment, PLR and FLR are tested with different image resolu-
tions, wireless network environments, and network
workloads. Each test runs the game for more than 60s.
When playing game, the user holds the joystick to one dedi-
cated direction to ensure that the game scene keeps chang-
ing. The user changes the direction of the joystick at a
frequency of 1Hz, which indicates the frequency of user
instruction update. In the table, the column of environment
indicates the distance and obstacles between the smart
phone and the WIFI router. The network user’s column
indicates the number of users in the network, and all users
are playing cloud gaming simultaneously. The column of
FLR and FLR-PFT denote the FLR without and with predic-
tive frame transmission.

Based on the results in Table 3, it is shown that the PLR is
highly related to the packet size, the wireless environment,
and the network traffic load. When the network state is bad,
the PLR can be higher than 40%, and the FLR is larger than
10%. With predictive frame transmission scheme, the FLR
can be decreased greatly. For example, when the PLR is
47%, our proposed scheme decreases the FLR from 12% to
3%.

In Fig. 5, we compare the FLR between the cloud gaming
systems with and without predictive frame transmission. In
the experiment setup, the image resolution is 480P, the FPS
is 60, and the frequency of instruction change is 1Hz. The
user takes the mobile device and walk around, so that the
wireless channel condition is continuously varying. As a
result, the PLR and FLR fluctuate over time, producing a
dynamic network environment. We trace the packet trans-
mission samples over a period of 300s. Based on the sam-
ples, we apply different schemes to the samples, and test
the FLR accordingly. When the network state is bad, the
predictive frame transmission can decrease the maximum
FLR from 15% to 4%, and decrease the mean FLR from 7%
to 1%.

7.3 Simulation Results

In this part, we present more simulation results. We adopt
various settings so as to simulate the cloud gaming system
in different cases. The PLR varies from 1% to 50%. In each
frame, the server renders 1 to 5 images, and the transmitted
packets varies from 2 to 5.

Fig. 4. Cloud gaming programs with the predictive frame transmission.

TABLE 2
Data Size of Images

Resolution 360P 480P 720P 1080P
Image size 30KB 55KB 111KB 264KB
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In Fig. 6, the optimal packet allocation policies with dif-
ferent PLRs are shown. In the simulation, the number of
rendered image in each frame is N ¼ 5, and the packets
transmitted in each frame is L ¼ 5. When the PLR is not
larger than 10%, the policy allocates one packet to each
image. With the increasing PLR, the policy allocates more
packets to the image of the current frame. When the PLR is
40%, 4 packets are allocated to the image of the current
frame, and only 1 packet is allocated to the predicted
images. To this end, the optimal packet allocation is highly
related to the network state. The optimal policy takes full
advantage of good network states by transmitting more
images of future frames to the user, and it focuses on the
image of the current frame when the network state is bad.
Fig. 6 also shows that the predicted images of nearer future
are of higher priorities to be transmitted.

In Fig. 7, the packet overhead to transmit the predicted
frames are compared with different PLRs. In the simulation,
the packets transmitted in each frame is L ¼ 3. When PLR is
relatively small, the overhead is very close to 3. In this case,
the predicted images are always sent by the server and dis-
played in the mobile devices. Accordingly, most of the
packets are allocated to the predicted frames and the packet
overhead is large. When PLR becomes larger, the packet
allocation policy is conservative, and more packets are allo-
cated to the current frame. In this case, the packet overhead
of predicted frames becomes smaller.

In Fig. 8, the FLR with different PLRs are compared
between different systems and policies. The upper bound of

FLR is derived without the predictive frame transmission,
and the lower bound of FLR is derived with the predictive
frame transmission and with the immediate feedback of
packet transmission. It is shown that the upper and lower
bounds of FLR are 14% and 0:6% respectively, when the
PLR is 45%. Although the optimal policy by MDP does not
have the immediate feedback of packet transmission, it can
also decrease FLR notably, which is 1:9% when the PLR is
45%. The nearest-future-based two-image transmission pol-
icy has the near-optimal performance compared with the
optimal policy by MDP. It can decrease FLR to 2:2% when
the PLR is 45%. The fixed packet allocation policy is com-
pared as a baseline from Ref. [25], in which packet allocation
is fixed regardless of the system state and network state. It is
shown that the FLR of the fixed packet allocation policy is
relatively high. Our proposed approach that allocates pack-
ets based on the system state can decrease the FLR from
13:2% to 1:9%, compared with the fixed packet allocation
policy.

Fig. 9 shows how the number of the rendered images in
each frame influences the FLR. When the number of ren-
dered images N is 1, the system does not predict any future
images. In this case, the FLR is 11%. By predicting 1 future
image that N ¼ 2, the FLR can be decreased to 3%. By pre-
dicting 2 or more future image, the FLR is smaller than 1%.
Thus, if the server has enough CPU and GPU resources, it
can decrease the FLR greatly by rendering enough pre-
dicted images. Even if the server only predicts 1 image, the
FLR is decreased substantially. Fig. 9 also shows that the

Fig. 5. Frame loss rate over a period of 300s.

Fig. 6. The optimal packet allocation policy with different packet loss
rates.

TABLE 3
Experiment Results

Fig. 7. The packet overhead of predicted frames.
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nearest-future-based two-image policy has the near-optimal
performances.

Fig. 10 presents the performances of Algorithm 4 in the
cloud gaming systems with general model based networks.
Although the system estimates the PLR, the system per-
forms well. When the PLR is 45%, the upper bound of FLR
is 14%, the PLR-estimation-based packet allocation policy
can decrease the FLR to 5:5%.

Fig. 11 shows the mean round trip delay of cloud gaming
systems. As shown by Eq. (22), the round trip delay is a
function of FLR. Because the predictive frame transmission
scheme can decrease the FLR, it also leads to a smaller
delay. When the PLR is 45%, the round trip delay of the sys-
tem without the predictive frame transmission is 18.3ms,
and the predictive frame transmission scheme can decrease
the delay to 16.8ms.

Fig. 12 presents the performance of the optimal user
schedule and resource allocation in the multi-server
multi-user scenario. In the simulation, totally 3 edge
servers are available where N and L vary from 3 to 5.
The optimal user schedule and resource allocation are
jointly derived by Algorithm 3. In comparison, the ran-
dom user schedule and equal resource allocation just
schedule users to the edge servers randomly, and allo-
cate the computation and bandwidth resources equally.
Numerical results show that the optimal user schedule
and resource allocation can efficiently reduce the mean
FLR of multiple users, which is decreased from 23% to
4:2% when the number of users is 10. Thus, Algorithm 3
can adaptively serve users based on their different
requirements and network states, and realize load bal-
ancing for the multi-server multi-user system.

8 CONCLUSIONS

In this paper, we study the cloud gaming systems assisted
by mobile edge cloudlets, and propose predictive frame
transmission schemes against the dynamic network states.
The key idea is to predict and pre-transmit images of
future frames to users in good network states, so as to
avoid the frame losses under bad network states. We
model and formulate the packet allocation problem for the
minimization of FLR, and derive the upper and lower
bounds of FLR, respectively. In the system with Markovian
property, we use MDP to derive the optimal packet alloca-
tion policy, and we also analyze the structure of the policy.

Fig. 8. Frame loss rate versus mean packet loss rate.

Fig. 9. Frame loss rate versus number of rendered images in each frame.

Fig. 10. Frame loss rate versus mean packet loss rate.

Fig. 11. Mean round trip delay versus mean packet loss rate.

Fig. 12. Mean FLR of multiple users versus number of users.
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To decrease the complexity, we further propose the near-
est-future-based two-image transmission policy that allo-
cates packets to two images in each frame, which shows
near-optimal performances. We extend the predictive
frame transmission scheme to the multi-server multi-user
scenario. A dynamic-programming-based algorithm is pro-
posed to jointly derive the optimal user schedule and
resource allocation, which can efficiently decrease the
mean FLR of all users. For more general network models,
we propose to estimate the PLR by change point detection,
and then propose the packet allocation policy with the
PLR estimation. By setting up a practical cloud gaming
testbed, it is validated that the predictive frame transmis-
sion scheme can decrease the maximum FLR from 15% to
4% and decrease the mean FLR from 7% to 1%.
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