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Abstract—In future wireless systems, latency of information
needs to be minimized to satisfy the requirements of many
mission-critical applications. Meanwhile, not all terminals carry
equally-urgent packets given their distinct situations, e.g., sta-
tus freshness. Leveraging this feature, we propose an on-demand
Medium Access Control (MAC) scheme, whereby each terminal
transmits with dynamically adjusted aggressiveness based on its
situations which are modeled as Markov states. A Multi-Agent
Reinforcement Learning (MARL) framework is utilized and each
agent is trained with a Deep Deterministic Policy Gradient
(DDPG) network. A notorious issue for MARL is slow and non-
scalable convergence – to address this, a new Situationally-aware
MARL-based Transmissions (SMART) scheme is proposed. It
is shown that SMART can significantly shorten the conver-
gence time and the converged performance is also dramatically
improved compared with state-of-the-art DDPG-based MARL
schemes, at the expense of an additional offline training stage.
SMART also outperforms conventional MAC schemes signifi-
cantly, e.g., Carrier Sensing and Multiple Access (CSMA), in
terms of average and peak Age of Information (AoI). In addi-
tion, SMART also has the advantage of versatility – different
Quality-of-Service (QoS) metrics and hence various state space
definitions are tested in extensive simulations, where SMART
shows robustness and scalability in all considered scenarios.

Index Terms—Internet-of-Things, medium access control,
multi-agent reinforcement learning, contention-based random
access, Markov decision process.

I. INTRODUCTION

IN THE last few years, we have witnessed a shift in wireless
communications from human-based communications, e.g.,

voice and data, to Machine-Type Communications (MTC).
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Massively interconnected devices enable new applications
such as factory automation, intelligent transportation system,
tactile Internet [2], etc. Unfortunately, current networks are
not optimized to support a large number of devices per cell.
In many cases, MTC devices transmit small data packets cou-
pled with low data rates which leads to a high volume of
control signaling in the network. Another challenge for the
network is that devices transmit seldom and randomly. As a
consequence of such massive MTC (mMTC) characteristics,
the design of new solutions on how can devices access the
wireless transmission medium is a necessity.

In this paper, we focus on enhancing Medium Access
Control (MAC) by providing devices, which from now on
we refer to as terminals, with an ability to cooperate when
accessing the shared transmission medium. For terminals to
successfully transmit a data packet, the terminals have to,
by relying on the MAC layer, gain access to time/frequency
resources each terminal requires. However, due to the large
number of terminals allocating resource may lead to high
latencies. For example, the uplink MAC layer latency in cellu-
lar networks (based on 3GPP Release 15) can be up to 10 ms,
due to the fact that a terminal with a packet to be transmitted
in the uplink must request a downlink grant, which indicates
the allocated resources, before sending the packet. Note, that
in our work, we consider only user-plane latency, which is
defined as the time between the first transmission of a data
packet and the reception of a physical layer acknowledgment.
Enhancements such as grant-free schemes have been proposed
to reduce the MAC uplink latency [3]. However, such solutions
still do not fully resolve one of the main issues in mMTC;
the high volume of control signaling. To that end, we pro-
pose the use of Deep Reinforcement Learning (DRL) to enable
the terminal to learn when to take the wireless transmission
medium without any additional control signaling messages
from the Base Station (BS).

A. Contributions and Outline

By letting the terminals be situationally-aware, i.e., com-
prehend their urgency to transmit, the uplink MAC can be
made more efficient, and this improved efficiency can be cap-
tured through application-oriented, flow-level metrics such as
the Age of Information (AoI) [4]. In this paper, we lever-
age Multi-Agent Reinforcement Learning (MARL) to design
a decentralized medium access solution that can be applied
to latency-critical services in 5G, such as data collection from
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sensors in closed-loop control for Industrial Internet-of-Things
(IIoT). Our main contributions include the following:

1. We propose a Situationally-aware MARL-based
Transmissions (SMART) solution to address the notorious
convergence issue in MARL for the decentralized access
procedure. Based on SMART, terminals observe their local
states and receive a common transmission tax signal from
the central controller to determine their transmit probabilities,
such that much of the training can be taken offline to improve
robustness. This approach is shown to shorten the convergence
time and improve the performance significantly compared
with state-of-the-art MARL schemes, at the expense of an
additional offline training stage wherein each terminal is
trained and pre-stores its set of Deep Deterministic Policy
Gradient (DDPG) parameters.

2. We conduct extensive investigations of our proposed
scheme. We compare SMART against a conventional MARL
scheme, which we implemented using a DDPG approach to
highlight the advantages of SMART, as well as the conven-
tional Carrier Sensing Multiple Access (CSMA) scheme, under
various system parameters and Quality-of-Service (QoS) met-
rics. We show that the MARL-based scheme outperforms
CSMA significantly when considering metrics such as AoI.
In particular, SMART achieves the best performance and has
the lowest complexity.

3. We provide detailed analysis of computation complex-
ity, storage space, convergence time and runtime, to support a
thorough comparison between the proposed and conventional
schemes.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model and formulate
the problem of utility maximization. For clarity, we present
our main results here and detailed proofs and explanations
are conveyed in the subsequent sections. In Section III, we
present the proposed SMART scheme in detail. Section IV
presents the main algorithm used for comparison and simula-
tion results. Finally, in Section VI, we discuss our conclusions
and directions for future work.

B. Related Works

The MAC layer operation is a key component of wire-
less link performance. Most work in this area has focused on
throughput optimization – in particular, the notion of through-
put optimality and its corresponding achievability has been
investigated extensively [5]–[7]. Recently, with the advent of
more delay-sensitive services, the focus has shifted to the
issue of latency. It is well known that contention-based ran-
dom access schemes, including Aloha and all variants of
CSMA, suffer significant latency performance degradation
under heavy traffic loads. To address this issue, extensive
research efforts have been made, either aiming to prioritize
the access [8]–[10], or to enhance the physical access capa-
bilities [3], [11]. For the purpose of access prioritization,
one of the techniques proposed is called Extended Access
Barring (EAB) [9]. This technique randomly selects a cer-
tain set of terminals to transmit by broadcasting a threshold
by the access point; each terminal generates a random number

that it compares against that threshold. IEEE 802.11e supports
QoS enhancements by pre-defining four channel access cate-
gories, each with a different priority in accessing the medium,
achieved by adopting different contention window sizes [10].
Sparse-Code Multiple-Access (SCMA) [3] and beamform-
ing [11] techniques, in turn, can be regarded as aiming to
increase the number of concurrent terminals that can be sup-
ported by strengthening the receiver capability in the code and
spatial domains, respectively. In IIoT, WISA [12] is one of
the earliest wireless technologies that is based on a contention
MAC. It is built upon the IEEE 802.15.1 physical layer and
modifies the MAC layer such that the latency can be within
2 ms (without retransmissions). WISA supports up to 120
devices, but the reliability is insufficient to support closed-
loop control applications. Based upon WISA, the Wireless
Sensor Actuator Network for Factory Automation (WSAN-
FA) standard [13], [14] was proposed for the PROFIBUS and
PROFINET automation protocols. WSAN-FA achieves suf-
ficient latency and reliability requirements, but with limited
scalability of up to 40 devices.

On the other hand, cellular networks adopt a grant-based
approach to avoid the collisions introduced by contention-
based random access. That is, the BS transmits a downlink
grant and allocates the resources centrally after it receives
the Scheduling Requests (SRs) from terminals with packets to
send. Since the SR interval is typically set to 10 ms [15], this
procedure introduces latency that is unacceptable for mmMTC.
Two approaches have been proposed to remedy this issue.
The first is for the BS to pre-allocate uplink resources to cer-
tain terminals, which is referred to as fast uplink access [15].
This approach is based on predicting the uplink traffic using,
e.g., machine learning techniques, and hence may suffer from
prediction inaccuracy. The other approach is grant-free uplink
transmission [3], which is basically a contention-based scheme
and hence has the same issue discussed in the previous
paragraph.

Recently, RL has been widely applied to wireless com-
munication systems, such as edge computing [16]–[18] and
interference awareness [19]. Reference [20] reviewed Deep
RL-based methods that address the problems in communica-
tion networks, e.g., dynamic network access, data rate control,
and wireless caching. Reference [21] mainly applied DRL
to solve the dynamic spectrum access problem—in particu-
lar, terminals access the wireless channels based on the DRL
scheme with input being the previous feedback of transmis-
sion acknowledgments. In [22], authors have developed the
deep reinforcement learning multiple access protocol for het-
erogeneous networks, capable of learning to achieve a global
objective such as maximizing the total throughput or max-
imizing α-fairness among all terminals. However, none of
the existing work has considered the situation of the termi-
nals themselves, which can be taken as states in the DRL
framework, allowing the terminals to adjust their transmission
strategies accordingly. In many applications, the situations of
terminals reflect the transmission urgency of the messages,
which can be utilized to enhance the QoS. In [23], the authors
reduce the duty cycle by compressing the activity time in
continuous intervals results in lower power consumption. In
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TABLE I
NOMENCLATURE

Fig. 1. Illustration of SMART framework, wherein heterogeneous QoS
requirements can be simultaneously satisfied by learning-based access
strategies.

essence, it learns about traffic trends, but it is not possible
to make predictions about traffic in a real system. In [24],
the ALOHA-Q protocol uses the Q learning mechanism as an
intelligent policy for slot selection in frame-based ALOHAs
to avoid conflicts with minimal additional overhead. However,
in our paper the distributed system guarantees low signaling
overhead and we focus on optimizing the user’s QoS rather
than avoiding conflicts.

The approach we take in this paper relies on situational-
awareness [25], a concept related to the recent work on
AoI [4], as well as Age of Synchronization (AoS) [26],
Age upon Decision (AuD) [27] and Inter-Delivery-Time
(IDT) [28]. In this line of work, a terminal has a time-varying
sense of its state, which can reflect the value of its yet-to-
be-sent packet; in contrast, traditional CSMA-type schemes
assume state-less terminals. In our previous works [29]–[32],
we have derived closed-form Whittle’s index-based policies
and decentralized scheduling schemes exclusively for AoI
optimization. The scheduling problem for AoI optimization
was also investigated in [33]–[37], however not considering the
distributed scheduling nature of the uplink MAC. In this work,
we build on our previous work [1]. Whereas the previous algo-
rithm uses Deep Q-Network (DQN), while our new proposed
SMART framework uses a DDPG network, which is more sta-
ble due to the adoption of soft updates and actor-critic ideas.
The SMART solution we propose still adopts a distributed
architecture, most of the training can be carried out offline,
and results in better convergence performance. This paper goes
beyond AoI optimization, considering arbitrary state defini-
tions and QoS requirements of terminals by using a model-free
MARL framework. Table I illustrates the notation used in the
paper.

Fig. 2. Illustration of the transmission frame. Each big block represents a
data slot, and each small block represents a mini-slot.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The SMART framework is illustrated in Fig. 1. In our
system, the goal of each terminal is to learn the probabil-
ity pn(t) with which it should try to transmit status updates.
Terminals compete for the wireless channel and only one
terminal in the time-slot can successfully transmit a status
update to the Fusion Center (FC) for collection. A multi-
access network is considered, wherein an information FC
collects information from N distributed terminals with possi-
bly heterogeneous QoS requirements. Time is slotted and we
assume the terminals are synchronized – for instance, the ter-
minals can maintain synchronization by receiving the primary
synchronization signal from the FC but with no scheduling
grants. The transmission model in the uplink is collision-based.
As shown in Fig. 2, a transmission frame consists of data slots
and several contention mini-slots. A data slot (of length Ts) is
preceded by several contention mini-slots (of length δ). In 5G
New Radio (NR), the concept of mini-slots [11] is introduced:
this is the minimum scheduling time unit, occupying as little as
a single Orthogonal Frequency Division Multiplexing (OFDM)
symbol. Given the scalable numerology of NR, wherein one
slot, consisting of 14 OFDM symbols, can be 0.125 ms with
120 kHz Subcarrier Spacing (SCS), each mini-slot can be quite
short (δ = 1/56 ms or lower with larger SCS).

We assume a p-persistent CSMA framework [38], whereby
terminal n transmits with a probability pn in each contention
mini-slot when it senses the channel as idle; otherwise, it stays
silent. Note that, different from homogeneous p-persistent
CSMA, the persistence levels of terminals can be different,
i.e., pn differs among terminals. In this way, the terminals can
be situationally aware and thereby choose the appropriate pn .
We note that in the Q-CSMA scheme [6], pn is determined
by the queue length of each terminal, which however only
applies to throughput optimization. Based on the definition
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of p-persistent CSMA, the terminal that has won the con-
tention transmits in the following data slot and the others
sense that the channel is busy and stay silent. After a data slot,
the FC feeds back an acknowledgment (ACK) packet indicat-
ing successful reception; otherwise, a Negative-ACK (NACK)
packet is fed back. Note that a p-persistent CSMA proto-
col closely approximates the IEEE 802.11 CSMA protocol,
which employs uniform backoff counters and binary exponen-
tial backoff, if p and the backoff window size are chosen such
that the average backoff intervals of the two protocols are
identical.

In this work, we only consider access to a single channel.
By using, e.g., CSMA, beamforming and multiple frequency
sub-channels, it is certainly possible to enable multiple
packet reception simultaneously. A straightforward approach
to extend from single-channel to multiple packet reception is to
let the terminals choose one channel randomly or to uniformly
pre-allocate the channels.

Problem Formulation: The objective is to minimize the
overall utility of all terminals over time, i.e.,

min
pn (t), n=1,...,N

N∑

n=1

ωnU n , (1)

where ωn denotes the weight associated with the terminal n.
pn(t) only depends on Markov state Sn (t) and the average
utility function U n , which is expressed as follows,

U n � lim inf
T→∞

1

T

T∑

t=1

Un(t), (2)

where T denotes the total time of the contention process and
the utility function of terminal n at time t is denoted by Un (t)
which reflects the terminal’s QoS requirements and will be fur-
ther developed in the following section. In each time slot, the
terminals choose their transition probabilities pn(t), depend-
ing only on their own situation, i.e., Markov states Sn (t). They
do so using learning-based approaches that will be specified
later – this decentralized approach is especially important in
future massive IoT systems, in order to avoid the prohibitively
high signaling overhead of centralized scheduling methods.

General Situation (Markov State) Characterizations: The
situation that terminal n is in at time t is denoted by its Markov
state Sn (t), which is a real-valued vector. The definition is
quite general, encompassing arbitrary state space and transition
dynamics. Note that even for non-Markov states, we can define
the state as the concatenation of several historical states as
approximated by Markov states.

Long-Term Average AoI: The recently proposed concept of
AoI [4] can be used to measure the information delay at the
destination, so as to describe the freshness of information. It
is formally defined as the time elapsed since the last-updated
packet’s generation. This definition takes into account the
delays introduced by sampling the information source and
data communication. The state of terminal n is defined as
SAoI,n (t) = (gn (t), hAoI,n (t)), where gn (t) is the age of the
most up-to-date packet at the terminal queue, and hAoI,n (t)
denotes the AoI at the destination, which is known to the

Fig. 3. An example that illustrates the evolution of AoI, AoS, IDT and PAoI.
The transmission time of the k-th packet is tk−1 and the reception time of
the k-th packet is rk . ιk is the transmission interval, and νk is the effective
update time. Here, Ap,k denotes the k-th peak of age, Dk represents the IDT
of the k-th packet and the change processes of AoI and AoS are represented
by the blue line and red line respectively.

terminal by keeping track of the receiver feedback. The AoI
is formally defined as

hAoI,n (t) � t − μAoI(t), (3)

where μAoI(t) is the generation time of the most up-to-date
packet at the receiver side up to time t. The AoI is helpful in
control systems in which the control action stringently depends
on the timely arrival of status updates from sensors. However,
a long-term average AoI better characterizes the data freshness
in the system. Therefore, the objective for each terminal is to
minimize the long-term average AoI, defined as follows:

ŪAoI � lim sup
τ→∞

1

τ

τ∑

t=1

E
[
hAoI,n (t)

]
. (4)

The access probability pn(t) is consistent with the definition
in the p-persistent CSMA scheme [38]. Conceptually, when
the AoI of the terminal is high, meaning that the terminal has
an aged status update at the FC, the terminal should be eager
to transmit and hence pn (t) should be higher.

Long-Term Average AoS: Similar to AoI, AoS is defined
as the time difference between the current time and when the
terminal became unsynchronized with the FC, expressed as

hAoS,n (t) � t − μAoS(t), (5)

where μAoS(t) denotes the earliest time the FC received a
packet since the last refresh of the terminal. The concept of
AoS is also graphically illustrated in Fig. 3. Minimizing long-
term average AoS is a QoS objective for some terminals, where
the long-term average AoS is

ŪAoS � lim sup
τ→∞

1

τ

τ∑

t=1

E[hAoS,n (t)]. (6)

Long-Term Average PAoI: We also consider the Peak Age of
Information (PAoI) [39], which provides information about the
maximum age value reached before an update was received. As
shown in Fig. 3, consider the k-th packet’s PAoI, represented
by Ap,k . The peak age of the k-th update is

Ap,k = ιk + νk , (7)
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where ιk is the transmission interval and νk is the duration of
the valid update. Therefore, the long-term average PAoI [40]
is defined as

ŪPAoI � lim
κ→∞

1

κ

κ∑

k=1

Ap,k . (8)

PAoI is closely related to the AoI previously considered, has
a simple formula, and characterizes the maximum age of
information before receiving updates, which can be relevant
in the context of multiple applications.

Long-Term Average IDT: In this work, we are interested
in treating inter-delivery time as a performance metric. IDT
refers to the time between the kth and the (k + 1)th packet of
terminal n is denoted by Dk .

Dk = rk+1 − rk . (9)

where rk is the arrival time of the kth packet. The terminal’s
QoS objective is to minimize the long-term average IDT with
an energy constraint, i.e., the terminal can only transmit when
its energy buffer is non-empty. The long-term average IDT is
defined as

ŪIDT � lim
κ→∞

1

κ

κ∑

k=1

Dk . (10)

Our approach to enhancing the MAC layer for mmMTC is
by noticing the fact that in many applications, e.g., sensors in
CPS and autonomous driving vehicles, terminals have situa-
tional awareness (represented as states), and hence can use this
awareness when accessing the wireless medium on-demand.
In this work, the situation of a terminal is represented by
a real-valued vector, which can incorporate heterogeneous
types of terminals and their QoS requirements. An exemplary
illustration is given in Fig. 1. For simplicity and concrete-
ness, consider three terminals contending for access to the
information FC. One of the terminals is a real-time sensor
that updates its status and aims for AoI minimization [4]. In
contrast, the second terminal is also a real-time sensor with the
objective of minimizing AoI but has lower AoI at the moment.
Therefore, its access probability p2(t) should be lower than
p1(t). The third terminal is an energy harvesting sensor, which
is envisioned to be ubiquitous in future IoT systems. This
poses a challenge for MAC for that not only the transmission
urgency of each terminal should be considered as in the AoI
minimization case, the transmission capability should also be
taken into account. Fortunately, our general model is able to
incorporate these considerations. We introduce our proposed
schemes in the next section.

III. PROPOSED SITUATIONALLY-AWARE MARL-BASED

TRANSMISSIONS ACCESS SCHEME

When considering the general Markov state definition in
the previous section, it is quite challenging to find a universal
analytical solution for various types of states and QoS require-
ments. For example, our previous works [30]–[32] found that,
even for AoI optimizations alone, this can be quite challeng-
ing, let alone for the co-existence of diversified types of states.
In view of this, we resort to the MARL framework.

RL [41] is a model-free control mechanism and therefore is
applicable to arbitrary types of states and state transitions. The
unique property of this problem is that each terminal, or agent
in RL terms, can only observe its own states in order to make
decisions – this is referred to as a partially observable identical
payoff stochastic game (POIPSG) [42], which is used to model
a problem wherein multiple agents learn simultaneously with
a single objective (total utility functions) and observations of
only local state information. The game terminology reflects
the interplay among terminals, which is quite different from
the conventional static environment setting in RL, as agents
can interfere with each other while learning, and is thus named
MARL.

The MARL nature of the problem poses significant chal-
lenges to find a scalable and stable solution. The challenging
part, which is well-known for MARL problems, is that each
agent only observes its own states’ evolution over time, and
its environment involves the actions of other agents, thus mak-
ing it non-stationary – like trying to learn from a moving
target. At the same time, all agents try to learn an optimal
policy, which is the one that yields the highest long-term
reward. This is why it is very hard to design a stable and
scalable (massive number of terminals are common in IIoT)
solution. In order to solve the above-mentioned problems, we
have experimented with several approaches, as described in
the following sections, including the state-of-the-art SMART
scheme which combines the idea of Whittle’s index and RL.
We consider the set of stochastic reactive policies wherein
the action of the terminal only depends on the current states,
and the dependence can be probabilistic. We show that our
approach achieves near-optimal performance consistently in
various scenarios.

A. Situationally-Aware MARL-Based Transmissions

The newly proposed SMART approach builds on our
previously proposed Transmission Tax (TT)-based decoupled
MARL approach [1]. TT is based on the idea of decoupled
RL training to avoid the convergence issue introduced by the
interplay among agents in MARL. The challenge the system
is facing is to ensure that the trained policy using decoupled
RL training also works well under the multi-agent setting. In
particular, if we naively trained each agent separately with the
objective of optimizing its own utility, then all agents would
become selfish, causing the channel to be jammed all the time
because no agents are trained to cooperate with others. We
resolve this issue by introducing a universal transmission tax
for all terminals when trained separately. That is, when an
agent is trained, a transmission tax (i.e., a cost m) is added
whenever the agent chooses to transmit; when it chooses to
stay silent, no tax is added. By doing this, agents are trained
to be less selfish, and more conservative in transmissions, i.e.,
only when an agent is in a situation where it has a high-value
packet would it actually transmit, or else the transmission tax
would surpass the value of the transmission. This approach
works well in various scenarios. In fact, the transmission tax
signal is broadcast from the FC at a very low frequency. The
terminal, whether it transmits or not, is determined by itself.
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Therefore, it is still a distributed algorithm in general con-
sidering the signaling overhead. In the scenario of this paper,
compared with the centralized method, the distributed method
has a small increase in signaling overhead. This is caused by
the difference between the signal sending cycle and the trans-
mission tax signaling sending cycle. In a period of time, the
adjustment period of the transmission tax is greater than the
medium access period, so the decentralized method is espe-
cially important when there are a large number of terminals, to
avoid the high signaling overhead of the centralized schedul-
ing method. TT, while a very simple heuristic, is in fact based
on Whittle’s index, which is widely known to result in a
near-optimal approach for this kind of problems, specifically
restless multi-armed bandit.

The connection with the Whittle’s index approach is illus-
trated as follows. In that approach, the utility maximization
scheduling problem is decomposed into N sub-problems,
where each subproblem can be formulated based on the
Bellman optimality equations (average cost with infinite-
horizon and relative cost-to-go functions [43]) as

f (Sn ) + Ĵ ∗ = min

⎧
⎪⎪⎨

⎪⎪⎩

R(0)
Sn

+
∑
S ′
n

P(0)
SnS ′

n
f
(
S ′
n

)
,

m +R(1)
Sn

+
∑
S ′
n

P(1)
SnS ′

n
f
(
S ′
n

)

⎫
⎪⎪⎬

⎪⎪⎭
,

(11)

wherein the top and bottom terms in the minimization oper-
ator represent the cost-to-go from state Sn onward with the
actions of remaining silent and transmitting, respectively. The
expected reward functions are denoted by R(0)

Sn
and R(1)

Sn
respectively for the two actions; the transition matrices are
denoted likewise. The relative cost-to-go function of state Sn
and the average reward (i.e., time average utility) are denoted
by f (Sn ) and Ĵ ∗ respectively. The terminal index is omitted
for simplicity while one should note that the reward functions,
transition matrices, and cost-to-go functions can all be differ-
ent among terminals to reflect heterogeneous states and QoS,
except for the transmission tax m, which is identical for all
terminals.

There are two differences between TT and an exact
Whittle’s index policy. First, the scheduling decisions are cen-
tralized and deterministic in the Whittle’s index policy, i.e.,
the index policy solves for the equivalent transmission tax for
each state that makes the scheduling options of (11) equally
good, and compares among terminals to find the one with
the largest index. In contrast, the decentralized transmission
strategy considered in our formulation is stochastic, which is
necessary in distributed settings. Second, the Whittle’s index
approach seeks the maximum index (equivalent transmission
tax) among terminals, while our approach lets all terminals
share an identical m.

We also found in our experiments that when using the TT
algorithm framework, the corresponding network needs to be
trained for each transmission tax of each agent, and then tested
in a multi-agent environment after training, to evaluate the
reward resulting from the current m and finally seek out the
suitable m through the golden search method. The downside
of this is that as the number of terminals increases, the cost

of training increases dramatically, so the training speed is
extremely slow. At the same time, a serious consequence of
both training and searching is that the final convergence results
are unstable. The above two points indicate that the algorithm
must be improved so as to make it more robust and adaptable
to the multi-agent environment.

Specifically, the SMART scheme is divided into two parts:
one is the generation of the database, and the other is the
adjustment of transmission tax m. In stage 1, we input m
and the state, and get an optimal transmission policy under
the current transmission tax after training. At this stage we
made an offline database, which trained for each m to obtain
and save the corresponding network parameters Θ of DDPG,
where the range of transmission tax m is chosen based on
the empirical values if obtained in our previous work [1].
Since stage 1 had to trains M episodes for each m value, the
formation of this database takes a long time. However, the
benefit is that it saves a lot of time for stage 2 training. In
stage 2, we first set an initial transmission tax m0 and read
the corresponding network parameters Θ from the database
prepared in stage 1. After that, the contention process is sim-
ulated and we seek out an optimal m. Specifically, all terminals
deploy the current model parameters to participate in the multi-
agent training phase after single-agent training, wherein each
terminal would transmit with a probability calculated based
on [38] if it senses the channel as idle and its instantaneous
DDPG output is to transmit based on its current state. The FC
feeds back an ACK/NACK after each data slot; the FC cal-
culates the average reward (i.e., time-average utility) in each
iteration and updates the transmission tax accordingly. If there
are more than qfail consecutive collisions, the transmission tax
will be greatly increased; otherwise, it will be slightly reduced
if there are more than qidle consecutive idle times. The adjust-
ment process will continue for a while until the average AoI
is stable. In this paper, the terminal can only observe its own
state – the degree of urgency, and determine the optimal strat-
egy under the current state according to the transmission tax
system. In our strategy, we want to maximize the expecta-
tion of future returns and predict not the flow of the system
but the evolution of the state. We show the overall process in
Algorithm 1, wherein initialization part of the algorithm, N is
the total number of terminals, ρ controls how many terminals
contend in each iteration, and the final Ntarget is the number
of contending terminals.

1) Details About State/Action Space: In RL, after an agent
acts, the system will transit to a new state and give a reward.
Subsequently, on the basis of the new state and the reward, the
agent carries out a new action according to a certain strategy
that is determined by the RL algorithm. The state space of the
algorithm is defined as S = {sm , sf }, where sm reflects the
utility at the terminal and sf is the utility at the FC. The action
output of DDPG is whether the terminal needs the contention
channel to transmit information or not. Of particular note is
that since its action space is continuous and one-dimensional,
we define it as transmitting when the absolute value of action
output is greater than 0.5 and remaining silent when it is less
than 0.5. The reward indicates the cumulative utility of each
terminal at the FC. Since one of the problems to be solved
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Algorithm 1: SMART
1 Stage1: Decoupled Single-Agent Training
2 Initialization:
3 Terminals: Initialize model parameters Θn (n = 1, . . . ,N )

following the normal distribution.
4 FC: Use mmax and mmin to denote the maximum and

minimum transmission taxes, respectively. Set mmin = 500,
mmax = 10000, Ntarget = ρN , and

ptx = min

{√
2δ

TsN 2
target

, 1
Ntarget

}
.

5 for q = 1 : M do
6 for n = 1 : N do
7 a) DDPG training for terminal-n to solve the MDP

expressed in (11) with given m to update their model
parameters Θn . The terminal’s action can only be to
transmit or not (stay silent).

8 b) Save the mapping relationship between m and Θn
in the database.

9 m = m +mi

10 Stage2: Multi-Agent Training
11 Initialization:
12 Terminals: Initialize model parameters Θn (n = 1, ...,N )

(n = 1, . . . ,N ) corresponding to m0 of stage1 training.
13 FC: Utilize m0 to denote the initial transmission tax.
14 for episode = 1 : T do
15 for n = 1 : N do
16 if Terminal-n senses the channel is idle and DDPG of

terminal-n outputs transmit then
17 Terminal-n transmits with probability ptx in this

time slot.
18 else
19 Terminal-n stays silent in this time slot.

20 Rk = average utility for all terminals.
21 if Consecutive transmission attempts fail qfail times then
22 m = m +mu

23 else if The idle channel is sensed qidle times in succession
then

24 m = m −md

25 else
26 m remains unchanged and continues to the next

episode.

is to minimize the cumulative utility at the FC, the reward is
designed as above. The entire framework is decentralized: as
a consequence, we map the tradeoff between the utility at the
terminal and the utility at the FC, which reflects the system
state definition, to the transmit actions.

2) DDPG Network Framework and Procedure: DDPG
algorithm is an actor-critic algorithm [44], combining a policy-
based approach with a value-based approach. In a policy-based
approach, the agent learns by interacting with the environment
and directly adjusts its policy. In contrast, an agent adopting
a value-based approach learns based on Q-functions and state
values. As such, the actor-critic design allows the actor’s neu-
ral network and the critic’s neural network to learn according
to their respective objective functions, resulting in faster con-
vergence in comparison to other RL algorithms. The critic’s
neural network role is to approximate the value functions,
while the actor’s neural network’s task is to approximate the

Fig. 4. Illustration of DDPG network framework and process. It is summa-
rized as the process of iteratively training the network through the interaction
of environment, actor network and critic network under the condition of a
cyclic episode.

policy function. We use θQ and θτ to parameterize function
approximators. During the execution of the action, the actor
network θτ applies the action at to the environment and gets
an observation (state) st . During the training process, for each
agent, the target network θτ

′
of the actor network θτ will gen-

erate an action at+1 and obtain the observation value st+1.
Then, the critic network θQ is updated by minimizing the loss
function as follows:

L
(
θQ

)
=

1

R

∑

i

(
yi −Q

(
si , ai |θQ

))2
, (12)

where R is the batch size and Q(.) is the Q function of the
evaluated network. The target value is defined as

yi = ri + γQ ′
(
si+1, τ

′
(
si+1

∣∣∣θτ
′)∣∣∣θQ

)2
, (13)

where ri denotes the cumulative utility of each terminal at the
FC, γ is the discount factor, whose value range is [0, 1], τ ′
and Q ′(.) are the policy function and the Q function of target
network, respectively. At the same time, we optimize the actor
network by maximizing the policy objective function J:

∇θτ J ≈
1

R

∑

i

∇aQ
(
s , a|θQ

)
|s=si ,a=τ(si )∇θτ τ(s |θτ )|si .

(14)

Then, the running average method is utilized to soft update
the parameters of the evaluated network to the target network:

θτ
′ ← ηθτ + (1− η)θτ

′
, (15)

θQ
′ ← ηθQ + (1− η)θQ

′
. (16)

In Fig. 4 we illustrate the data flow between the actor and
the critic in the DDPG. DDPG is a deep learning algorithm and
takes advantage of techniques introduced in the work proposed
in the design of DQN [45]. More specifically, DDPG is off-
policy, meaning that it is trained using a randomly selected
batch R of past experiences saved in its memory, referred to
as the replay buffer. Additionally, DDPG relies on the use of
target and evaluation neural networks combined with batch
normalization to stabilize the learning process.
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TABLE II
SMART NEURAL NETWORK COMPOSITION

TABLE III
SIMULATION PARAMETERS

3) Network Architecture: For illustration purposes, we
describe the network architecture in Table II, where Gs denotes
the number of neurons in a hidden layer, Ws is the dimension
of the state space, and Wa represents the dimension of action
space. The actor network contains two fully-connected hidden
layers, and the critic network contains one fully-connected
layer. The actor outputs a specific action, while the critic
network outputs a specific Q value.

IV. SIMULATION RESULTS

In this section, we test the performance of our proposed
SMART scheme using simulation. We compare SMART
against conventional MAC schemes (TDMA and CSMA
based) and a MARL approach in a multi-terminal scenario,
all presented in the first subsection. In the following subsec-
tion, we focus on evaluating SMART performance using the
AoI metric. In the third subsection, we analyze the trade-offs
between SMART and a conventional MARL approach in the
aspects of complexity, convergence speed, runtime, variance
and mean value performance. Finally, in the last, fourth sub-
section, we assess the performance of SMART in a scenario
with multiple terminals with different QoS demands.

The empirical parameters we use throughout our simulation
are shown in Table III. In Table IV we list hyperparameters
in the neural network and the test environment we used to
implement the DDPG. The computational complexity of the
DDPG algorithm is an important issue, and in our actual exper-
iment, we also find that different library versions could affect
the results. Therefore, the test environment must be consistent

when comparing the performance of various algorithms. We
train the SMART in two stages. In stage-1, we train 3× 105

episodes to prepare the database, and test with 2000 episodes
in stage-2. The packet arrival rate is 0.1 packets/ms and the
length of a mini-slot is 0.01 ms. Assuming that the size of the
energy buffer is 1, the energy arrival rate is 0.2 packets/ms
and the arrival follows the Poisson process.

A. Conventional MAC and MARL Schemes for Comparisons

RR-ONE: In our previous work [31], we have demonstrated
that in the set of Arrival-Independent and Renewal (AIR)
policies, a round-robin policy with one-packet (latest packet
only and others are dropped) buffers (RR-ONE) is the optimal
strategy for minimizing time-average AoI. Such an RR-ONE
scheme is essentially a TDMA scheme, i.e., each terminal
occupies a dedicated time slot and takes turns in sending
an update. In addition, RR-ONE is asymptotically optimal
in all strategies, in the sense that it can achieve the optimal
scaling factor in the regime of a large number of terminals.
The average AoI achieved by RR-ONE can be derived in
closed-form as

h̄
(∞,N )
AoI,RR =

1

N

N∑

n=1

1

λn
+

N − 1

2
, (17)

where N is the number of terminals and λn is the status packet
arrival rates of terminal-n.

p-Persistent CSMA: In p-persistent CSMA, when a terminal
n wishes to transmit data, it first listens for the channel. If
the channel is busy, the terminal keeps listening to the next
contention mini-slot. If the channel is free, it transmits with
probability pn (selected to be pn = 1

N in this work [38]) and
delays to the next contention mini-slot with probability 1−pn .

We also designed a conventional MARL approach as a
baseline against which to assess the benefits of employing
our proposed SMART solution. We designed the conventional
MARL approach using the same RL algorithm (DDPG [44])
as in SMART to make the comparison fair. The selected state
space consists of the three most important aspects of the envi-
ronment for the terminal. The first state is the AoI value of
the terminal’s status update (the time since the terminal gen-
erated a new status update). The second state is the AoI value
of the terminal’s status update in the FC (the time elapsed
since the terminal’s successfully transmitted status update was
generated). The third state captures the success of the last
transmission attempt by the terminal, i.e., a collision flag. The
third state indirectly represents the terminal interplay with
other terminals in the environment. The action the terminal
takes represents the transmission probability at a given time
instant and is a real value pn ∈ [0, 1]. The terminal can suc-
cessfully transmit a status update only when it is the only
terminal in the system to do so. Terminals have to learn to
cooperate and avoid acting greedily, i.e., trying to transmit a
new update at every opportunity. The latter turns out to be
particularly problematic as the number of agents present in
the system increases, as we verified during our simulations.
The terminal obtains the reward based on the state space.
More specifically, the reward depends on the AoI value of
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TABLE IV
DDPG HYPERPARAMETERS AND TESTING ENVIRONMENT

TABLE V
CONVENTIONAL MARL NEURAL NETWORK COMPOSITION

the terminal’s status update stored in the FC. The higher the
AoI at the FC, the lower the reward is.

Deep-Reinforcement Learning Multiple Access (DLMA):
Finally, we also compared the method proposed in the [22],
and made appropriate modifications to the environment. The
framework is similar to the conventional MARL approach,
where the network changes from a traditional full connection
to a Q neural network (QNN) with the first two hidden layers
fully connected, followed by two ResNet blocks. The setting
of parameters is consistent with the work of [22].

We implemented this conventional MARL approach using
PyTorch [46], a Python library for deep learning. In Table V,
we list details of the neural network structure we used in our
design. Note that Wma denotes the dimension of the agent’s
action, Wms denotes its state dimension, and Gm represents
the number of neurons in the layer. Additionally, between each
hidden layer, we applied a dropout layer, to prevent over-
fitting. We also added batch normalization after activation for
the first hidden layer to improve the learning speed. As we
demonstrate in Section IV, terminals employing the conven-
tional MARL approach can learn to cooperate to decrease the
AoI of status updates collected at the FC. Unfortunately, the
policy agents’ learning is far from optimal.

Remark 1 (Comparison of Runtime): SMART requires sig-
nificantly less computational power to operate than conven-
tional MARL. In SMART, a terminal has to adjust only m,
which it obtains from the database generated offline, i.e.,
Stage 1 in Algorithm 1. In the conventional MARL scheme,
the terminal is required to train continually; otherwise, its
performance will deteriorate over-time. Consequently, the sim-
ulation runtime is much shorter for SMART. In contrast,
RR-ONE and CSMA schemes require no learning processes
and thus have much lower computational overhead.

Fig. 5. Performance evaluations for AoI with different arrival rates.

Remark 2 (Comparison of Stability): In most cases, when
using SMART, the terminals achieve lower average AoI than
in the conventional MARL scheme. However, the variation in
the obtained average AoI per episode is smaller in the case of
conventional MARL. This drawback of SMART stems from
the fact that the offline training of SMART is more sensitive to
online system changes. The variation comparison indicates that
conventional MARL is more stable than SMART. It appears
that when terminals adopt the conventional MARL scheme,
they sacrifice performance to achieve better stability.

Remark 3 (Comparison of Scalability): Due to the fact that
SMART adopts an offline training stage that pre-trains the
DDPG networks such that they are stable models in the online
training stage, it can maintain good performance even when
there are many terminals and traditional MARL methods have
difficulty in converging. SMART is more scalable and, as we
show in the next section, with an increase in the number of
agents, the performance degrades more slowly than that of the
conventional MARL approach.

It is worth stating that we believe that these three can
represent the state-of-the-art MAC schemes. In our previous
work [31], we have shown that among a set of indepen-
dent arrival and update (AIR) strategies, the RR-ONE scheme
is the best strategy to minimize the time-averaged AoI.
The CSMA protocol represents a traditional algorithm that
improves on ALOHA by adding carrier sense. At the same
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Fig. 6. Average AoI as a function of the number of terminals when (a) the arrival rate is 0.05 packets/ms; (b) the arrival rate is 0.1 packets/ms; (c) the
arrival rate is 0.2 packets/ms.

time, p-persistent CSMA mediates a compromise between
reducing conflicts such as non-persistent CSMA and reducing
channel idle time with 1-persistent CSMA. Finally, the con-
ventional MARL scheme is used in the field of reinforcement
learning, which converges quickly and smoothly.

B. Comparison of SMART, Conventional MARL, RR-ONE,
and CSMA Schemes in Average AoI

To assess the performance of SMART, we first test it in
a scenario of 30 terminals and vary terminals’ packet arrival
rate. As we show in Fig. 5, we observe that both the SMART
and conventional MARL schemes proposed are superior to
DLMA algorithm and traditional p-persistent CSMA. Overall,
SMART performs better than conventional MARL in terms of
average AoI, and conventional MARL is still far from reaching
the asymptotically optimal lower bound achieved by RR-ONE.
It is of special note that when the arrival rate is low, there is
a gap of about 20 ms between the proposed SMART scheme
and the asymptotically optimal RR-ONE. As the arrival rate
gradually increases, the gap shrinks, and eventually SMART
outperforms RR-ONE in terms of average AoI.

Fig. 6 presents the average AoI as a function of the number
of terminals, for different arrival rates. The three subfigures
from left to right correspond to the results for arrival rates of
0.05 packets/ms, 0.1 packets/ms and 0.2 packets/ms, respec-
tively. As can be seen from Fig. 6(b), for a low number of
terminals, the average AoI achieved by the traditional CSMA
scheme, DLMA scheme and conventional MARL scheme is
similar to the proposed scheme, but as the number of ter-
minals increases, the performance deteriorates for all. This
also highlights the disadvantages of traditional solutions in
high-density scenarios. The conventional MARL scheme and
DLMA schemes perform better than the traditional p-persistent
CSMA scheme for a low arrival rate, but their performance is
comparable when the arrival rate increases. For arrival rates
of λ = 0.1 and above, SMART outperforms RR-ONE. Such
a result is expected because while RR-ONE is an asymptoti-
cally optimal strategy for minimizing the average AoI in AIR
policies, but it is not optimal under other policies or QoS. An
additional limitation of RR-ONE is that terminals can only
access a slot in a cyclical order, which means, that terminals

Fig. 7. Training results of the SMART and conventional MARL schemes.
The number of agents is 30, the packet arrival rate is 0.1 packets/ms, and the
length of a mini-slot is 0.01 ms.

can’t prioritize access. In contrast, SMART can take advantage
of terminals’ situation; thus, it can deliver better performance
in the conditions presented in our work.

The long-time average AoI of SMART is tested in com-
parison with the conventional MARL approach which utilizes
DDPG to train and feedback the entire contention process.
The packet arrival rate is 0.1 packets/ms, the length of a mini-
slot is 0.01 ms, and the number of agents is 30 in Fig. 7,
and the plot shows the running average AoI over time. It
is observed that the conventional MARL scheme converges
rapidly, and the average AoI reaches about 50 ms after 50
training steps. SMART requires more training steps for con-
vergence, and the AoI has a larger variation after convergence.
The tradeoff is that the average AoI after convergence is about
20 ms for SMART, about 30 ms lower than that achieved by
a conventional MARL approach.

C. Scenarios With Variable Arrival Rates and Different QoS
Requirements

We apply the schemes to a scenario with variable arrival
rates for each terminal, whose value is drawn from a uniform
distribution in [0, 0.1]. Fig. 8 shows that the three schemes
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Fig. 8. Average utility when terminals have variable arrival rates.

Fig. 9. Average PAoI with a different number of terminals and different
arrival rates.

that employ RL can learn and adapt to the arrival rate varia-
tion among terminals by employing the deep neural network.
The overall performance of the three is better than p-persistent
CSMA, and SMART outperforms the conventional MARL
scheme and DLMA scheme. In this case, RR-ONE outper-
forms due to the fact that RR-ONE utilizes every time slot,
while SMART has more idle slots at low arrival rates.

We show the impact of the different number of terminals and
different arrival rates on the average PAoI for various schemes
in Fig. 9. The results show that SMART yields the lowest min-
imal PAoI compared to the conventional MARL, DLMA and
p-persistent CSMA schemes. RR-ONE also exhibits optimality
in this case. Additionally, SMART is more robust than con-
ventional MARL and DLMA as the conventional MARL and
DLMA performance deteriorates significantly once more than
80 terminals compete for the same channel. The low PAoI indi-
cates that the proposed SMART approach enables all terminals
equal access to the transmission channel. An important quality
to enable timely control to services relying on the collected
information.

In Fig. 10, the average utility—which in this case includes
AoI, AoS and Energy Harvesting (EH) sensors that are opti-
mizing the IDT (described in details in Section II) and each

Fig. 10. Performance evaluations for diversified QoS requirements. It illus-
trates that the proposed SMART scheme is adaptable for heterogeneous QoS
requirements.

TABLE VI
COMPARISON OF RUNTIME AND STORAGE SPACE

type contains the same number of terminals—shows that the
proposed SMART scheme is scalable and applicable to hetero-
geneous QoS requirements. The arrival rate is 0.1 packets/ms,
the energy arrival rate is 0.2 packets/ms and the energy buffer
size is 1 for the EH sensor. The traditional p-persistent CSMA,
DLMA and conventional MARL schemes do not perform well
compared to SMART. SMART outperforms all, while the
DLMA is superior to the conventional MARL and the con-
ventional MARL is better than p-persistent CSMA when the
number of terminals is low.

In summary, SMART and conventional MARL virtually
have the same computational complexity and SMART can
achieve better average performance in general, whereas con-
ventional MARL performs better in terms of convergence
speed, stability and storage space. However, the longer train-
ing process for SMART is a fair trade-off as it outperforms
conventional MARL in runtime performance and scalability.

V. ANALYSIS RESULT

In this section, we analyze the runtime, complexity,
and variance of the algorithms for a more comprehensive
comparison.

Runtime: In order to evaluate the difference in the runtime,
we conduct an experiment on the time required by the two
schemes to run 2000 episodes. We set the same environment
parameters for both schemes, i.e., the number of terminals is
30 and the arrival rate to 0.1 packet/ms. From Table VI, we
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TABLE VII
COMPARISON OF COMPLEXITY

Fig. 11. Variance of AoI for different schemes.

can observe that under the same condition, the runtime of con-
ventional MARL is about 273 times that of the SMART. This
is due to the fact that in SMART, Stage 1 of the database has
been completed for most of the network training tasks. In order
to store a database with m ∈ [500, 10000], a large amount
of storage space is required, and during the memory-reading
process, there is memory consumption. Therefore SMART
occupies about 1,000 times as much storage as conventional
MARL. In other words, SMART trains the majority of its
neural network offline, which sacrifices a part of the storage
capacity in exchange for faster runtime.

Complexity: We analyze the algorithmic complexity of the
two schemes. In a fully-connected network, the output of a
neuron can be formulated as

f

⎛

⎝
∑

j

ωj xj + b

⎞

⎠, (18)

where f is the activation function, ωj is the weight and xj is the
input of the neuron-j respectively. The bias is represented by
b. We calculate the complexity of addition and multiplication
separately and get a relatively simple mathematical expression.
In Section III, Table II specifies the network architecture of
DDPG in SMART, and Algorithm 1 describes the overall pro-
cess of the algorithm. The network structure for conventional
MARL is illustrated in Table V. We represent the number of
outer loops and inner loops of the conventional MARL code
as Lo and Li, respectively. From the above, we summarize the
complexity of the two schemes in Table VII. As a result, the
two schemes are comparable in terms of algorithm complex-
ity because the two schemes every computational task use the
same DRL framework.

Variance: Next, we analyze the variance of the converged
values of AoI under the different tested schemes and plotted in
Fig. 11. As the number of terminals increases, the variance of
the AoI achieved by the traditional p-persistent CSMA scheme
and the RR-ONE scheme increases significantly. At the same
time, the variances of the AoI for the conventional MARL,
DLMA and SMART schemes fluctuate within a much smaller
range.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a scalable and robust
MARL-based framework for decentralized wireless access
with general system states and QoS metrics. The frame-
work is applicable to many practical scenarios that demand
situationally-aware status-based packet transmissions. A
new, common feedback-based distributed learning scheme,
SMART, is designed to tackle the slow and non-scalable con-
vergence issue in MARL. Compared with a state-of-the-art
DDPG-based MARL scheme, SMART achieves consistently
stable convergence to a better solution with hundreds of termi-
nals (in a single channel), at the expense of increased storage
space to store the DDPG network parameters. Based on exten-
sive simulations, it is shown that SMART outperforms conven-
tional CSMA and state-of-the-art MARL schemes significantly
when metrics involving status-based packet transmissions are
considered.

The proposed scheme is versatile, since the state space and
reward function, i.e., QoS metrics under consideration, are
quite general. However, the design with a common feedback
signal, which is vital in our design to stabilize the MARL
convergence, puts restrictions on the action space, that is the
action should be binary, e.g., transmit or not in this paper. It
remains interesting to design novel solutions for MARL with
a more complicated action space. This is left for future work.
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