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Abstract— Machine learning and wireless communication tech-
nologies are jointly facilitating an intelligent edge, where feder-
ated edge learning (FEEL) is emerging as a promising training
framework. As wireless devices involved in FEEL are resource
limited in terms of communication bandwidth, computing power
and battery capacity, it is important to carefully schedule them
to optimize the training performance. In this work, we consider
an over-the-air FEEL system with analog gradient aggregation,
and propose an energy-aware dynamic device scheduling algo-
rithm to optimize the training performance within the energy
constraints of devices, where both communication energy for
gradient aggregation and computation energy for local training
are considered. The consideration of computation energy makes
dynamic scheduling challenging, as devices are scheduled before
local training, but the communication energy for over-the-air
aggregation depends on the l2-norm of local gradient, which is
known only after local training. We thus incorporate estimation
methods into scheduling to predict the gradient norm. Taking the
estimation error into account, we characterize the performance
gap between the proposed algorithm and its offline counterpart.
Experimental results show that, under a highly unbalanced
local data distribution, the proposed algorithm can increase the
accuracy by 4.9% on CIFAR-10 dataset compared with the
myopic benchmark, while satisfying the energy constraints.

Index Terms—Federated edge learning, over-the-air com-
putation, energy constraints, dynamic scheduling, Lyapunov
optimization.

I. INTRODUCTION

ANY emerging applications at the wireless edge, such
as autonomous driving, virtual reality and Internet of
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things (IoT), are powered by modern machine learning (ML)
techniques. Data-driven approaches also penetrate into the
wireless network itself for channel estimation, encoding and
decoding, resource allocation, etc. [2], [3]. The complex
ML models for these applications need to be trained over
massive data, while data samples are usually generated by
edge devices. Centralized training methods can hardly be
competent, as collecting data at one location would create
network congestion, lead to extremely high transmission cost
and may cause privacy concerns. On the other hand, computing
capabilities of base stations (BSs) and edge devices, such as
mobile phones, smart vehicles and IoT sensors, are becoming
increasingly powerful, enabling intensive computations at the
edge. In this context, federated learning (FL) is considered as a
promising training framework that can exploit distributed data
and computational resources with limited communication and
privacy leakage [4], [5]. In FL, multiple devices train a shared
model collaboratively with local data, and a central parameter
server (PS) coordinates the training process.

The limited communication resource and non-independent
and identically distributed (i.i.d.) data, i.e., the distribution
of local data at one device is not identical with that of
other devices or the global data, are the two major chal-
lenges in FL [6], [7]. Current methods to improve the com-
munication efficiency include model compression [10]-[14],
device scheduling [15], [16], and enabling multiple local
iterations [13], [17], [18]. Under non-i.i.d. data, the training
performance can be improved by sharing global i.i.d. data with
devices [7] or the PS [19], introducing data redundancy [1],
or scheduling devices based on their importance [16].

In a wireless network, FL can be carried out among wireless
edge devices coordinated by a BS, called federated edge
learning (FEEL). In FEEL, participating devices are often
resource limited in terms of wireless bandwidth, computing
capability and battery capacity. A key issue is to design device
scheduling and resource allocation algorithms that optimize
the training performance. Considering the communication
energy constraints, an energy-efficient bandwidth allocation
policy is proposed to maximize the fraction of scheduled
devices in [20], while an online algorithm is designed to
maximize the sum utility of scheduling in [21]. In [22],
scheduling decisions are based on both the channel states
and the importance of local updates. Due to the timeliness
requirements of FEEL tasks at the wireless edge [23], training
delay is another key performance metric. The total commu-
nication delay for training is minimized in [24], while the
sum delay for computation and communication is minimized
in [25]. Communication delay is combined with the impor-
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tance of each update for probabilistic scheduling in [26].
A hierarchical FEEL framework is proposed in [27], where
the training delay is minimized by optimizing the update
interval and model compression. The trade-off between the
total energy for communication and computation and the
training delay is further considered in [28]-[30], yielding a
joint design of local computation speed and wireless resource
allocation.

The literature above mainly focuses on the implementa-
tion of FEEL via digital wireless communications. However,
the unique communication requirement of FEEL, i.e., the
PS only needs the average of local model updates rather
than each individual vector, makes the separate design of
learning and communication protocol highly suboptimal [31].
A new solution called over-the-air computation is facilitated
to further improve the communication efficiency [32]-[36],
which is achieved by synchronizing the devices to transmit
their local gradients or models in an analog fashion, and
exploiting the superposition property of a wireless multiple
access channel (MAC) to do the summation over-the-air.
It is shown in [33] that over-the-air FEEL can reduce the
latency of model aggregation by O (10 g]\; ~ ) compared with
the digital counterpart, where N is the number of devices.
This scaling law indicates that over-the-air computation is
particularly promising when the number of participants is
large. Power limits of devices can highly degrade the training
performance, which yields the design of power allocation
schemes over noisy channels [34], fading channels [35] and
broadband fading channels [33]. Power control algorithms that
take into account the importance of updates [37], uplink and
downlink noise [38], [39], gradient statistics [40] and non-i.i.d.
data [41] are further proposed.

While over-the-air computation has stringent requirements
on synchronization and channel state information (CSI), there
are efforts to relax them for practical implementations. For
misaligned signals, a whitened matched filtering and sampling
scheme is proposed in [42]. It is shown in [43] that over-
the-air computation can be realized with imperfect CSI in
multi-antenna systems. Based on one-bit gradient quantization
and majority voting, a digital realization of over-the-air FEEL
is further proposed in [44].

Existing papers on over-the-air FEEL mainly consider
average power constraints for communication, but have not
considered the computation energy for local model training,
which is in fact non-negligible for edge devices. In this work,
we aim to optimize the training performance under total energy
constraints of devices by designing an energy-aware dynamic
device scheduling algorithm, where energy is consumed for
both communication and computation. The introduction of
computation energy makes the scheduling decisions chal-
lenging due to the causality of decision making and energy
consumption. This is because, in over-the-air FEEL, the com-
munication energy of each device for gradient aggregation
depends on the lo-norm of its local gradient estimate, which
can only be obtained after computation. However, online
scheduling decision should be made at the start of each training
round before computation.

Note that this issue does not arise in the existing
work [28]-[30] that jointly considers communication and
computation energy for FEEL with digital communication.
The reason is that the transmit power of digital communication
can be chosen independently of the local update. Without
computation energy, this challenge does not arise in the power
allocation problem [1], [33]-[35] for over-the-air FEEL system
either.

The main contributions of this work include:

1) We characterize the convergence bound of the considered
over-the-air FEEL system, taking into account the noise in
the wireless channels and the variance of stochastic gradients.
Based on the convergence analysis, we formulate a device
scheduling problem to optimize the training performance
under the total energy budget of each device, where both
the communication energy for gradient aggregation and the
computation energy for local gradient calculation are included.

2) We propose an estimated-drift-plus-penalty algorithm for
energy-aware dynamic device scheduling based on Lyapunov
optimization. A virtual energy queue is constructed at each
device to indicate the up-to-date energy deficit and enable
online decision making. Estimation methods to predict the
lo-norm of the local gradients are further incorporated in the
proposed scheduling algorithm, in order to address the key
challenge that communication energy is unknown when the
device scheduling decisions are made.

3) We provide a theoretical performance guarantee for the
proposed dynamic scheduling algorithm, by comparing its
worst-case training performance and energy consumption with
the offline optimal solution. Our analysis further shows the
impact of energy estimation error on the performance bound.

4) Experiments on MNIST and CIFAR-10 datasets validate
that the proposed dynamic device scheduling algorithm can
achieve higher model accuracies compared with the myopic
benchmark, while satisfying the energy limits. Under a highly-
non-i.i.d. scenario, the accuracy can be increased by 4.9%. The
impact of design parameters on the training performance and
energy consumption are also evaluated to provide guidelines
for practical implementations.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and problem formulation.
In Section III, we carry out convergence analysis. The
energy-aware dynamic device scheduling algorithm is devel-
oped in Section IV with its performance guarantee. Experi-
mental results are shown in Section V, and conclusions are
given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Overview

As shown in Fig. 1, we consider a FEEL system with one PS
and N devices, denoted by N' = {1,2,..., N}. Each device
n € N has a local dataset D,, with D,, data samples, and the
global dataset is denoted by D = (J,,_;  n Dn with D =
SN | D, data samples.

Given a single data sample & € D, a loss function f(w,x)
is used to measure the fitting performance of an s-dimensional
model vector w € R*. At device n € N, the local loss
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Fig. 1. Tllustration of the considered over-the-air FEEL system.

function F,,(w) is defined as the average loss over local data
samples, i.e.,

F(w) &

1
B > flw, ). (1)
€Dy
The goal of the FEEL task is to train a shared global
model w that minimizes the global loss function F'(w), which
is defined as
N

N
F(w) 2 %Z > flwa) =) %Fn('w). 2)

n=1xeD, n=1

Under the coordination of the PS, the FEEL system iterates
the following three steps until the termination condition is
satisfied: 1) the PS broadcasts the up-to-date global model
to a subset of devices, which are scheduled to participate
in the current training process; 2) the scheduled devices
compute their local gradients with local datasets; and 3) the
PS aggregates the local gradients over a wireless MAC and
updates the global model. Each iteration consisting of these
three steps is called a training round, which is indexed by ¢ in
the following. The termination conditions that are commonly
used for FEEL include the convergence of the global model,
or reaching a preset maximum number of training rounds.
Since we consider an energy-limited wireless scenario, we set
the total number of training rounds to 7.

B. Local Gradient Computation

At the start of the ¢-th training round, the PS schedules a
subset of devices B; € A/, and broadcasts the global model
vector w;_1 obtained in the last round to these scheduled
devices. Let (3, € {0,1} be an indicator, with 3, = 1 if
device n is scheduled to participate in the ¢-th training round,
and (3, = 0 otherwise. Thus B; = {n|8,: = 1,n € N}
We also assume that the broadcast of w;_; is error-free since
the PS is a more capable node with sufficient power.

Each scheduled device n € B, computes the local gradient
estimate g,, , by running the stochastic gradient descent (SGD)
algorithm on a local mini-batch £,, ; C D,,, according to

1
G =17, 2 Vi), 3)

xELp ¢

where L, = |£,, | is the batch size, and £,,; is uniformly
selected at random from the local dataset D,,. We remark
here that, following [26], [35], [39] and for simplicity,
a single-iteration gradient update is considered in this work,
but the proposed online scheduling framework can be extended
to a more general case where multiple local iterations are
carried out in each training round. Also note that, the selection
of batch size is in general an empirical matter in ML. In this
work, we consider the batch size as a hyper-parameter rather
than an optimization variable, and set to an identical value
across devices.

Local computation energy mainly depends on the complex-
ity of the ML model, the computation frequency, as well as the
batch size [29], [30]. Given the ML model, we can estimate the
computation workloads in floating point operations (FLOPs)
for gradient calculation. Meanwhile, we assume that the com-
putation frequency is fixed at each device. Accordingly, for
device n, the computation energy for calculating the local
gradient on a single data sample is denoted by a constant e,,.
The computation energy consumption ng}i] at device n in
round ¢ is given by

B =, L. 4)

C. Gradient Aggregation Over-the-Air

We assume that the devices transmit their local gradients
over a noisy wireless MAC in an analog fashion for global
gradient aggregation, and the PS and devices each has a single
antenna. To enable the summation of local gradients over-the-
air, transmissions are synchronized across all the scheduled
devices, and the transmit power of each device is aligned
with the others. We assume that strict synchronization can
be achieved. Let h,, ; be the wireless channel gain between
device n and the PS, which is assumed to remain constant
during one transmission period. Note that, the device schedul-
ing policy designed in this work is applicable to arbitrary
channel models. Moreover, as local gradient computation takes
time and the wireless channel is time variant, the channel
gain observed at the start of each training round may not be
precise. The observation error, i.e., the difference between the
observed channel gain that determines the device scheduling
and its true value during transmission, will also be considered
in the following. Similar to [33], [35], we consider the simple
channel inversion policy for gradient aggregation. Let o, be
the power scalar that determines the received SNR at the PS.
Then the transmit power p,, ; of each scheduled device n € B;
is set to

Ot

Y
hn,t

and pp g, , is transmitted from device n to the PS. In this
way, local models can be summed over-the-air. The commu-
nication energy consumption Em at device n in round ¢ is
then given by

Pnt = (&)

2
B = ||pacdnells = 75— 105 ®)
n,t

where |||, represents the lo-norm of vector x. Therefore,
if device n is scheduled in the ¢-th round, the total energy
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consumption F,, ; for computation and communication is

B, =EY + BN = h2

gt e @)
Note that, our model can be extended to the case with

multiple channels with minor changes, where the local gra-

dient should be equally partitioned and transmitted in parallel

through these channels [33], [35]. Then the communication

energy of each device is the sum of that over all the channels.
At the PS, the received signal y, is given by

Y, = Z hn,tpn,tgn,t +z¢ =0y Z gn,t + 24, )
neB; neB;

where z; € R? is an additive white Gaussian noise vector,
in which each entry is i.i.d. and follows Gaussian distribution
with zero mean and variance o3.

In FEEL, we aim to update the global model vector w;
according to

Lnes, Init
B
where 7, is the learning rate in the ¢-th training round, and

| - | denotes the cardinality of a set. Due to channel noise, the
actual global model is updated according to

©)

Wt = Wi—1 — Mt

Wi = W1

ne—Jt
O't|Bt|

ZnEBtgnf Zt
Wi_1 — = .
1 ”t( B olB

(10)

D. Problem Formulation

Given the total number of training rounds 7' and the
initial global model vector w,, we aim to minimize the
expected global loss E[F'(w)] under the energy constraints of
devices, by optimizing the device scheduling {,, ;} and power
scalar {o.}. The expectation E[F(wr)] is taken over the
randomness of channel noise and data sampling for local SGD.
The problem is formulated as

P1: min E[F(w (11a)
{00, ,am},Tl [Fwor)]

Zﬁn tBni < By, Vn, (11b)

Uf>0 Bnt €40,1}, Vn,t. (llc)

In the first constraint (11b), E,, represents the total energy
budget of device n, and the inequality indicates that for each
device, the total energy consumption for both local gradient
computation and wireless communication over 7' training
rounds cannot exceed its given budget. The second constraint
limits the ranges of optimization variables.

Based on the law of telescoping sums, problem P1 can be
re-written as

T
P2:  min > E[F(wy)] — E[F(w;1)]
COREERS I ——

s.t.  constraints (11b), (11c). (12)

There are three major challenges to solve problem P2:

1) The Inexplicit Form of the Objective Function: Since
the neural network architectures for ML might be deep and
diverse, and the evolution of the model vector is very complex
during the training process, it is hard to express E[F'(wq)] or
E[F(w;)]—E[F(w;_1)] in closed form. Therefore, we need an
approximation of the objective function in closed-form, which
can be obtained based on the convergence analysis.

2) The Unavailability of Future Information: The optimal
solution to P2 requires the system state information of all
rounds at the very beginning of training. Such information
is unavailable in practice. Thus we aim to design an online
scheduling algorithm, in which the scheduling decision is
made at the start of each round with only the current states.

3) The Causality of Decision Making and Energy
Consumption: A unique characteristic of over-the-air FEEL
is that the communication energy depends on the compu-
tation result to be transmitted. That is, the communication
energy in (6) depends on the lo-norm of local gradient
, which can only be acquired affer computing
the gradient i in each round. However, online device scheduling
decision should be made before gradient computation, in order
not to consume computation energy at unscheduled devices,
or even not to transmit global updates to these devices. As a
result, the exact energy consumption in the current training
round is unknown upon decision making. Note that this issue
does not arise in the case of digital communication as the
transmission power can be chosen independently of the local
update. Moreover, the channel gain h,, ; observed at the start of
each round may not be precise depending on the computation
delay.

To address these challenges, we first substitute the objective
function with its upper bound based on the convergence
analysis in Section III. Then in Section IV, we design an online
device scheduling algorithm based on Lyapunov optimization,
where the unknown instantaneous states for decision making,
including the l-norm of local gradients and the wireless chan-
nel gains, are substituted with their estimates, and in particular,
the impact of the estimation error on the performance of the
proposed algorithm is analyzed.

III. CONVERGENCE ANALYSIS AND PROBLEM
TRANSFORMATION

In this section, we analyze the convergence rate of the
considered FEEL system, mainly to investigate how the opti-
mization variables affect the training performance. We seek an
upper bound for the objective function in problem P2, based
on which we are able to transform the original optimization
problem to an approximate one with explicit expressions.

For the simplicity of notation, we define the local full gra-
dient on device n in the ¢-th round as g,, ;, £ VF, (w;_1) =
D%L > wep, Vf(wi—1,z), the global full gradient in round ¢
as g, = VF(w;_1) = Zﬁle %gn’t, and the optimum loss
as F* £ mingeps F(w).

To facilitate the convergence analysis, we make the fol-
lowing assumptions according to the state-of-the-art literature,
including [10]-[13], [17], [33]-[35], [44], etc.
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Assumption 1: Stochastic  gradient is unbiased and
variance-bounded, i.e., for any device n and training round t,
taking the expectation over stochastic data sampling, we have

Ewn [vf (wt—lawn)] = Eﬁn,f, I:gn,t:l = gt7 (13)
Ea, |[Vf (wies,@a) = g,|3] < G2 ¥t (14)

where x,, € D,, is a data sample, L, C D, is a stochastic

mini-batch, and G is a constant.
Assumption 2: Loss functions Fy(w),...

smooth, i.e., for Vv,w € R® and n € N,

,Fn(w) are -

l
F(v) — Fu(w) < VEL(w)(v —w) + & o~ w3 (15)
Assumption 3: Loss functions Fi(w),...,Fnx(w) are p-
strongly convex, i.e., for Vv, w € R® and n € N,
Fo(v) = Fo(w) = VE](w)(v —w) + £ o - wl3. (16)

A. Convergence Analysis

Based on the assumptions above, we provide a single-round
convergence guarantee in the following lemma by charac-
terizing the upper bound of E[F(w;)] — E[F(w;_1)]. Our
convergence analysis jointly considers the transmit power and
channel noise in the over-the-air FEEL system, as well as the
variance of the stochastic gradients.

Lemma 1: Given the global model vector wi_1 and the
set of scheduled devices By at the beginning of round t, the
single-round convergence is upper-bounded by

E[F (w,)] — E[F(w;_1)] < —m (1 - li) 9.2

2
2 2 2
i ( G ) . an
2 \Lo|Be| = oF|B]?
where the expectation is taken over the randomness of channel
noise and SGD.
Proof: See Appendix A. (]

According to Lemma 1, we can see that the number of
devices |B;| scheduled in each round makes a key contribution
to the convergence rate of training. The power scalar o; should
also be chosen carefully to reduce the impact of noise while
satisfying the energy constraints of devices.

Based on Lemma 1, the convergence performance of over-
the-air FEEL after 7" training rounds is given in the following
theorem.

Theorem 1: Given the global model vector wo and any
device scheduling sequence {B;,t = 1,...,T}, after T rounds
of training,

E[F(wr)] - F* < (E[F(

T
H 1 _an
. =1

+ZA IT =) + Az, (18)

i=1 j=i+1

ne H
5 (Lble\ + ‘B |z) and the learning rate

satisfies n; < min{{,1}, Vt.
Proof: See Appendix B. (]

A
where A; =

We remark here that, instead of maximizing the weighted
average number of devices scheduled overtime as in the
existing papers [1], [20], [21], we provide a more reasonable
objective function based on Lemma 1 and Theorem 1 in
the following, which directly minimizes the upper bound on
E[F(w;)] —E[F(w;—1)]. Another remark is that, we make the
three assumptions above to enable the convergence analysis.
In particular, Assumption | indicates i.i.d. local data, and
Assumption 3 assumes strong convexity of loss functions.
While the algorithm we propose in the following is based
on the obtained convergence behavior, it can also work well
under non-i.i.d. data and non-convex loss functions, as being
validated in the experiments in Section V.

B. Problem Transformation

As discussed in Section II-D, the objective function

Zthl E[F(w;)] — E[F(w;—1)] in problem P2 cannot be
expressed explicitly. Let
In2 2 2
U, &2 ¢ + %08 . (19)

N 2
2 Ly En:l ﬁn,t o—tQ (Zﬁ;l ﬁn,t)

where we recall that o, and (3, are the power scalar
and worker scheduling indicator, respectively. To make the
optimization problem tractable, we substitute the objective
function with its convergence bound according to Lemma 1,
and formulate an alternative optimization problem:

T
min Z —Nt (1 — %

lg.l13 + Ut
{oe, Bna}is, 15 )

s.t.  constraints (11b), (11c).

P3:

(20)

Moreover, due to the unavailability of future system states,
we aim to design an online algorithm to solve problem P3,
and ignore the impact of current decision on the future system
states. As the global full gradient g, defined on the whole
dataset is fixed given the global model vector w;_; at the start
of training round ¢, and the learning rate 7, and smoothness
parameter [ are hyper-parameters, the first term in (20) is a
constant. Therefore, we ignore this term and transform the
optimization problem to

: . .
P {Umgl,lfl}f_l 21Ut

s.t. constraints (11b), (11c¢). 21)
IV. ENERGY-AWARE DYNAMIC DEVICE
SCHEDULING ALGORITHM

In this section, we propose an energy-aware dynamic device
scheduling algorithm that solves problem P4 in an online
fashion. To address the challenge brought by the causality
of decision making and communication energy consumption,
we first propose two heuristics to estimate the ly-norm of
local gradient estimates. Then, we design an online scheduling
algorithm based on Lyapunov optimization, and character-
ize the worst-case performance of the proposed algorithm,
which takes the error of energy estimation into consideration.
Finally, we provide some practical considerations for real
implementations.
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A. Estimating the l,-Norm of Local Gradients

We propose two heuristics in the following to estimate the
lo-norm of local gradients ||gn fH , at the start of each training
round t.

1) Compute the lo-Norm of Local Gradients With a Smaller
Mini-Batch (EST-C): An additional step is introduced at the
start of each training round. To be specific, the PS broadcasts
the up-to-date global model w;_; to all the devices. Then,
each device randomly selects a mini-batch £, , C D,, with
batch size L. to calculate a local gradient estimate §'®!:

n,t *
gt = Z Vf(wi,@). (22)
‘P’EL;L t
The computation energy should be modified as ET[,c o

ﬁn,ten(Lb - Le) + enLe-
We further assume that each device can upload the value

of ‘ gfsﬂ to the PS with negligible cost, which is used as

the estlmation of the [o-norm of local gradient for device n
in round ¢.

Following similar proof of Lemma 1 as (39), the exact
value of gradient norm and its estimation have the bounded
expectations as follows:

~ 2 2 G?

E||gn.ll3) < llgn.ll; + L

< 2, &

| Ja]l] < llandls + £

As Ly is typically much larger than L., the expressions

above indicate that the estimation may suffer from a large
deviation due to the gradient variance.

2) Estimate With Past Information (EST-P): A simpler and
more straightforward way is to use the most recent /s-norm of
local gradient to estimate the current one at each device. Let
t, = argmax;{t|5, = 1} be the most recent round in which
device n is scheduled. The estimated [>-norm of the current
local gradient estimate is:

We will show in Fig. 2 and Fig. 3 in Section V that,
under our considered datasets, estimation by EST-P is more
accurate due to the strong temporal correlation of gradients,
while the EST-C method does not perform well due to the
high variance of the stochastic gradients. Moreover, compared
with EST-C that requires additional computation and commu-
nication, EST-P method is computation-free and only needs
each device to report the lo-norm of local gradients when it is
scheduled. Therefore, we use EST-P to estimate the [o-norm
of local gradient in the following device scheduling algorithm.
On the other hand, if the variance of the stochastic gradient is
small while the temporal correlation of the gradient norm is
weak, the EST-C method can be incorporated.

~[est]

gnt

(23)

~ [est] 2

gnt

=|Gn.s, (24)

B. Energy-Aware Dynamic Device Scheduling Algorithm

To enable online scheduling without any future informa-
tion while satisfying the total energy constraints of devices,

we construct a virtual queue g, ; for each device n to indi-
cate the gap between the cumulative energy consumption till
round ¢ and the budget, evolved as
E,
Qn,t+1 = Max< qn¢ + Bn, tEn t T , 00, (25)
with initial value g, 1 = 0, Vn € N.
Recall that the causality of device scheduling and energy

consumption leads to the unawareness of E,, ; at the start
of round t. Based on the estimated [o-norm of local gradient

g

at the beginning of round ¢, the estimated energy consumption
of device n at round ¢, denoted by En,t, is given by

[est]
n,t

2 -
by EST-P and the wireless channel gain h,, , observed
2

~ [est]
g n,t

+ enLp. (26)

=72,

Inspired by the drift-plus-penalty algorithm of Lyapunov
optimization [45], the online scheduling aims to solve the
following problem:

N

P5:  min VUL + Y BrtniEn (27a)
Tty Pnt n=1

st. 0;>0, By €{0,1}, Vn, (27b)

where V' is an adjustable weight parameter to balance the
loss U; and energy consumption, and recall that U; =
ﬁ G2 USS

2 \ Lo X0 Bnt ' 02(SN_, Bur)

Compared to the classical drift-plus-penalty algorithm
where all the states in the current round are known, the drift
term qn7tE7,,7t in P5 is an approximation, and thus we call it
estimated-drift-plus-penalty algorithm.

Notice that problem P5 is a mixed integer non-linear
programming problem, which is still very difficult to solve.
Meanwhile, existing work has shown that the convergence
performance of FEEL with over-the-air gradient aggragation
is not very sensitive to the power scalar oy, as long as the
received SNR or the power limit of each device is larger than
a threshold [34]. Therefore, we further decouple the optimiza-
tion variables in P5 by considering the power scalar o; as a
hyper-parameter, and then develop the optimal solution to the
online device scheduling problem.

1) Received SNR and Power Scalar o4: The power scalar o,
is chosen as follows. In the ¢-th round, the expected received
SNR at the PS side is denoted by ~;, given by

Z gn,t

neby

- 2
Hat ZnEBt gn,tuz _ Uf

1213

2

= (28)
ot

v =K

2

Let vy be a pre-defined SNR threshold. The power scalar
is set according to

7000\/_

g [

7000\/_

~ [est]

gnf

;o (29

[

min,, e nr ‘

such that the expectation of the received SNR can meet the
threshold 7y even in the worst case when a single device is
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Algorithm 1 Optimal Online Device Scheduling to P6

1: Sort C;, = qn7tE7,,7t,Vn} and let C’t[m] be the m-th
smallest value of C;.

2:.for k=1,...,N do

3:  Calculate v (k) according to (31).

4: end for

5: Get k* = argmin,{v, (k) | k=1,...,N}.

6: forn=1,..., N do i

ik Let ﬁn,t = 1if qn,tEn,t < Ct[k ]» and Bn,t =0

otherwise.
8: end for

scheduled. Recall that H a, tHg is unknown and thus approxi-
~ [est]

gnt

2) Optimal Online Device Scheduling: Given the power
scalar oy, the device scheduling {3, } in the ¢-th round aims
to solve

accordlng to the EST-P method.

mated by ‘

N
P6: min VU + Y BuidniBne  (302)

vyt
" n=1

st Bns€{0,1}, Vn. (30b)

An optimal solution to problem 76 is shown in Algorithm 1.

In Line 1, we sort C; = {qn,tEn,t,Vn} in the ascending

order, and let Cim} be the m-th smallest value of C;. Many
sorting algorithms such as Heapsort or Mergesort can be
used, with worst-case complexity O(N log N). In Lines 2-4,
we iterate over the possible number of scheduled devices
k € {1,...,N}, and calculate the corresponding minimum
estimated-drift-plus-penalty v, (k) according to

lm<G2 02) Zc[k

2 Lyk

The optimal number of devices £* to be scheduled is
obtained by finding the minimum v;(k) according to Line 5,
and k* devices with smallest estimated drift qmtEmt are
scheduled, as shown Lines 6-8. Besides Line 1, all the other
steps are with complexity O(N). Therefore, the complexity
of making a device scheduling decision in a single round
is O(N log N).

3) The Complete Algorithm: The proposed energy-aware
dynamic device scheduling algorithm is summarized in
Algorithm 2. In the ¢-th training round, the PS makes device
scheduling decision by solving P6 based on the estimated
energy consumption and the virtual queue, which is run in
an online fashion without any future information. The weight
parameter V' and the virtual queue states {g, ., Vn} jointly
balance the training gain of the FEEL task and the energy
consumption of devices. In particular, a larger V' puts more
emphasis on scheduling more devices so as to accelerate the
convergence rate. Meanwhile, a larger g, ; indicates that the
cumulative energy consumption of device n till the current
round far exceeds the budget, so that the device tends to save
energy. As shown in Algorithm 1, the optimal solution to P6

ve(k) £ €1V

Algorithm 2 Energy-Aware Dynamic Device Scheduling

Algorithm

1: Initialization: initialize global model w,. Each dev1ce n
runs local SGD according to (3) to report || a, OH , to the
PS, and let ¢, 1 = 0.

2:fort=1,...,7T do

3:  The PS set oy according to (29), acquires channel gains
R, .+ and calculates the estimated energy consumption £, ;
according to (26) for all devices.

4:  The PS schedules a subset of devices BB; by solving P6
according to Algorithm 1.

5:  The PS broadcasts w;_1 and o; to the scheduled devices
n € B;.

6:  Each scheduled device n € B; updates local gradient
g, according to (3), and transmits h 7-Gy, simultane-
ously with all the other scheduled devices.

7. The PS receives y, and updates the global model w;
according to (10).

8:  Each scheduled device n € B, reports I, ; to the PS,
and the PS updates the virtual queue ¢, for all devices
according to (25).

9: end for

also indicates that devices with smaller values of qn,tEn,t are
always scheduled first, as their energy is relatively sufficient.

Then, the up-to-date global model vector w,_; is broadcast
to the scheduled devices, who run local SGD to compute local
gradients g,, , in parallel. After computation, local gradients
are aggregated over-the-air and the global model is updated by
the PS. Finally, the PS collects the actual energy consumption
of each scheduled device, which also contains the information
of local gradient norm | g ,» and updates the virtual queue
states for all the devices to guide the scheduling decision in the
next training round. The state information is exchanged with
reliable point-to-point communication, and the transmission
cost is neglected.

We remark that, while Algorithm 2 is designed based on
the convergence analysis above, the proposed online device
scheduling framework has a wide applicability. Once con-
vergence analysis is carried out in any other system setting,
such as multiple local iterations or non-convex loss functions,
we can then substitute U; with the derived convergence
upper bound while still using the estimated-drift-plus-penalty
algorithm for dynamic scheduling.

C. Performance Analysis

The performance of the proposed dynamic device schedul-
ing algorithm is characterized by comparing with its optimal
offline counterpart

T
min U,
{Bn}i, Z

t=1

S.t. Zﬁn,tEn,t < En7 vna
t=1

Bnt €10,1}, Vn,t.
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This is in fact the device scheduling problem of P4,
regarding {0 }7_, as a pre-defined hyper-parameter sequence.
Let {3} ,}{=, be the offline optimal device schedule obtained
by solving the problem above, and Zthl U/ the corresponding
offline optimal loss. Define ZtT:l Utjt as the cumulative loss
of the proposed algorithm, which is achieved by solving
the online device scheduling problem P6 in each round.
To enable the theoretical analysis, we neglect the impact of
current scheduling decision on the future gradient norm for the
offline counterpart. Meanwhile, we assume that the wireless
channel state is independent across time, but do not make any
assumption on its distribution. The performance guarantee of
the proposed algorithm is shown in the following theorem.

Theorem 2: Compared to the offline optimal solution, the
cumulative loss of Algorithm 2 can be bounded by

T T N

Z Z OoT? +T(T —1)6 0,
Uti S Ut* + 0 + ( ) OZn:l (32)

t=1 t=1

% ’

and the total energy consumption of Algorithm 2 can be
bounded by

T
Z ﬁn,tEn,t S En
t=1

T N
4|2V Y UF 4200+ 2T(T = 1)60 Y 0,, (33)

t=1 n=1

where 5y £ maxg, ;} {‘Ent —E,

A
Hn = maxy {‘En,t — % }

Proof: See Appendix C. (]
Theorem 2 shows that, the training performance of the
proposed energy-aware dynamic device scheduling algorithm
can be bounded with respect to its optimal offline coun-
terpart, while the deviation between the cumulative energy
consumption of each device and its budget is also bounded.
The worst-case performance can be improved by reducing the
upper bound of the energy usage bias #,, and the maximum
energy estimation error dy. Moreover, the trade-off between
the training performance of the FEEL task and maximum
energy consumption of each device can be balanced by the
weight parameter V. In practice, we should use the energy
in a balanced manner to avoid large 6, and carefully select
V' to optimize the training performance within the energy
limits.

We also remark here that, compared to the state-of-the-art
that also applies Lyapunov optimization to solve scheduling
problem under energy constraints [1], [21], [46], our analysis
further shows the impact of estimation error on the perfor-
mance bound.

}, 0o 2 S0 162 and

D. Implementation Issues

To enable the efficient implementation of the proposed
algorithm in s real system, we provide some practical con-
siderations as follows.

1) Communication Rescheduling: The key motivation of
rescheduling is to avoid using significantly more energy

than expected when the estimation error of Emt is large.
To be specific, after local gradient computation, each sched-
uled device can learn its exact energy consumption £, ; by

. . -2 .
calculating the local gradient norm ||gn’tH2 and acquiring

the accurate channel gain h, ;. If E,: — E,; < dp, where
0p, > 0 is a given threshold, then the device is scheduled for
gradient aggregation. Otherwise, the device backs off from the
communication step.

2) Peak Power Constraint: In practice, the power used
to transmit each entry of p, g, , cannot exceed the peak
power limit of a device. While the proposed algorithm does
not schedule a device with high communication energy in
general, it cannot guarantee that all transmitted entries satisfy
the peak power constraint. Inspired by the idea of gradient
clipping [47], we can simply truncate p; g, , at the peak
power. This generally does not introduce significant loss unless
the peak power is highly limited.

3) Minimum Value of Virtual Queue: The typical evolution
of virtual queue is given in (25), in which the minimum queue
value is set to 0. In problem P6, ¢, ; = O indicates that the
energy consumption is not considered in the current scheduling
round, and thus the device is scheduled. However, the energy
consumption [, ; might be large, leading to a large deviation
0,, and thus a poor worst-case performance. To avoid such
cases, we instead set g, > 0 as the minimum value of the
virtual queue in practice.

4) Estimations of Smoothness Parameter | and Variance
Bound G?: Our algorithm is designed based on the con-
vergence analysis under Assumptions in Section III. These
hyper-parameters should be estimated in practice. According

to the definition of smoothness, [ is estimated by the maximum

value of 8n.e=8m.ea]|
Hwt717wt,2 ||

during training, while each device

can count the variance of local gradients to set a reasonable
variance bound G2

V. EXPERIMENTS

In this section, we evaluate the proposed energy-aware
dynamic device scheduling algorithm for an image classi-
fication task using both MNIST! and CIFAR-10? datasets.
We consider N = 10 devices and both i.i.d. and non-i.i.d.
datasets on devices. For the i.i.d. case, the training dataset of
MNIST with 60000 samples (or CIFAR-10 with 50000 sam-
ples) is randomly partitioned into /N disjoint subsets, and
each device holds one subset. For the non-i.i.d. case, we sort
the data samples by their labels, and each device holds a
disjoint subset of data with m labels (represented by ‘non-
i.i.d. (m)’ in the following). Note that the data distributions
are more skewed for smaller m, and they become i.i.d.
when m is equal to the total number of classes in the
dataset.

For MNIST, we train a multilayer perceptron (MLP) which
has a 784-unit input layer with ReLLU activation, a 64-unit hid-
den layer, and a 10-unit softmax output layer, with 50890 para-
meters in total. The total number of rounds is set to 1" = 200,

Uhttp://yann.lecun.com/exdb/mnist/
Zhttps://www.cs.toronto.edu/ kriz/cifar.html
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Fig. 2. The l2-norm of local gradients and their estimated values on the MNIST dataset.
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and 10 local iterations are carried out per round with batch
size L, = 64. In each round, the total computation energy is
1J for each device. For CIFAR-10, we train a convolutional
neural network (CNN) with the following structure: two 3 x 3
convolution layers each with 32 channels and followed by a
2 x 2 max pooling layer, two 3 X 3 convolution layers each
with 64 channels and followed by a 2 x 2 max pooling layer,
a fully connected layer with 120 units, and finally a 10-unit
softmax output layer. Each convolution or fully connected
layer is activated by ReLU, and the total number of model
parameters is 258898. We train the model for 7' = 10000
rounds, and one mini-batch is run per round with batch size
Ly = 64. Local computation energy per round per device is
set to 10J.

For both MNIST and CIFAR-10, the learning rate 7, is set
to 0.05, Vt, a momentum of 0.9 is adopted, and cross entropy
is adopted as the loss function. The wireless channel follows
Rayleigh fading with scale parameter 1, and by default we
assume that the accurate channel gain can be observed, i.e.,
iLn,t = hy, ;. The variance of channel noise is 08 =109 The
power scalar is selected according to (29), where the default
SNR threshold is 79 = 7dB. For the dynamic scheduling
algorithm, the minimum value of virtual queue is g, = 0.1,
and the maximum estimation error §;, = 0.5En,t is allowed
for communication reschedule.
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(b) Non-i.id. (m = 2).

0 2000

The l2-norm of local gradients and their estimated values on the CIFAR-10 dataset.

A. [>-N

In Fig. 2 and Fig. 3, we first evaluate the EST-C and EST-P
methods proposed in Section IV-A that estimate the /5-norm
of local gradient, by observing the temporal variations of
the gradients. To eliminate the impact of device scheduling,
we do not limit the energy consumption and all devices are
scheduled. The batch size L; used for the model training
is 64. In each round, each device further computes its local
gradient with smaller batch sizes L, = 4, 8 and 16 and records
the corresponding estimated gradlent norm, which is adopted

by the EST-C method as H g[egt] . For the EST-P method,
2
[est]

’gnt

with Lb = 64 at a certain round before t. Each curve is
averaged over 50 and 20 runs for MNIST and CIFAR-10,
respectively.

As shown in Fig. 2 and Fig. 3, the gradient norms achieved
by different batch sizes are highly varying, and a smaller
batch size yields a higher [;-norm of gradient due to the
non-negligible gradient variance, which is consistent with
the analysis in (23). This result indicates that the EST-C
method cannot provide an accurate estimation of gradient
norm. Meanwhile, with a fixed batch size, such as L; = 64,
the gradient norm has a strong temporal correlation. Therefore,

orm of Local Gradients

will be given the value of the [3-norm of gradients
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Fig. 4. Performance of the proposed dynamic scheduling algorithm and benchmarks on MNIST.
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Fig. 5.

the EST-P method can provide a much better estimate of the
gradient norm, which is embedded in the proposed dynamic
device scheduling algorithm.

B. Performance of the Proposed Device Scheduling
Algorithm

We compare the performance of the proposed scheduling
algorithm with two benchmarks:

1) Optimal Benchmark: Devices do not have energy limi-
tations, so that all of them participate in each training round.
Channel fading and noise still exist, and thus this benchmark
provides the optimal performance under the same wireless
settings of the FEEL system.

2) Myopic Policy: For each device n, the maximum
energy that can be used in round ¢ is given by the remain-
ing energy divided by the remaining number of rounds,

e, En=Xil)BniBns
U . T—t+1 ) .« .
In Fig. 4, we compare the training performance and energy

consumption of the proposed dynamic scheduling algorithm
with the optimal and myopic benchmarks on MNIST. Let £ =
1J be the energy budget per round, and the total energy budget
of each device is £,, = TE,Vn. For non-i.i.d. data with 1 label
per device, the weight parameter is V' = 5 x 107, while for
the other two cases, V = 10%. The training performance is
characterized by the accuracy of the MLP model on the test
dataset, as shown in Fig. 4(a). Results show that our proposed
dynamic scheduling algorithm achieves the optimal accuracy
under i.i.d. data, and always outperforms the myopic policy.

(b) Unified cumulative energy usage.

Performance of the proposed dynamic scheduling algorithm and benchmarks on CIFAR-10.

To show the energy usage during the training process,

L BnrEnx .
we plot max,enr ZT*% which represents the max-

imum value of the unified cumulative energy usage across
devices till the ¢-th round. As devices may have different
energy budgets, directly plotting their maximum energy usage
is not informative. Instead, this unified metric reflects how
much energy has been used by the devices. For the myopic
policy, the energy required for computation and communica-
tion exceeds the budget at the beginning of training, thus no
devices can be scheduled. However, our proposed algorithm
enables devices to use energy in a more flexible way, thus
improving the training performance.

Similar comparison is made on CIFAR-10 dataset in Fig. 5,
where E = 8J and V =5 x 10''. Note that compared to the
local computation energy required per round (10J), the energy
budget is relatively limited, and the advantage of the proposed
dynamic scheduling over the myopic policy is more prominent
in such a scenario. In particular, under the highly non-i.i.d.
case with m = 1, dynamic scheduling improves the accuracy
by 4.9% compared to the myopic policy, by utilizing 10%
more energy in a more balanced manner. We can also see that
our proposed algorithm can satisfy the energy constraints of
devices under both datasets (at the end of training, the unified
energy usage is smaller than 1).

In the following, we further explore the impact of key
parameters on the training performance and energy consump-
tion with CIFAR-10, as it is more challenging than MNIST.
We focus on the non-i.i.d. case, where each device has a local
subset with m = 2 labels.
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Fig. 7. Performance of the proposed algorithm under different received SNR thresholds on CIFAR-10.

Fig. 6 validates that the weight parameter V' can balance
the trade-off between the training performance and energy
consumption, where E = 8J. As V increases, devices use
energy in a more aggressive manner, leading to a higher energy
usage and more scheduled devices, so as to accelerate the
convergence. However, if V' is too large, such as V' = 1012,
energy is not given enough attention and finally the limit
is violated. In practical systems, V' should be judiciously
selected to optimize the training performance while satisfying
the energy constraints. We further plot the accuracy of the
classical federated averaging (FedAvg) algorithm in [5] with-
out considering channel fading and noise, while the training
parameters remain the same, and the local data is i.i.d. All
the devices are scheduled in each round, and their models can
be uploaded precisely for global averaging. FedAvg in this
ideal setting provides a baseline accuracy for the considered
FL system, regardless of the wireless channel environments.
Compared to FedAvg, we can see that our proposed algorithm
with a proper V' can achieve a similar convergence rate, while
the gap of the accuracy is mainly due to the energy constraints
and channel noise.

The impact of the received SNR threshold ~ on the train-
ing performance and energy consumption with the proposed
dynamic scheduling algorithm is shown in Fig. 7, where
E =8J,and V = 2.5 x 10*!. In Fig. 7(a), the curve marked
with ‘true’ plots the actual evolution of the model accuracy
during the training process with SNR threshold —10dB, while
the other curves present the best test accuracy up-to-date.

The maximum cumulative energy usage and instantaneous
fraction of devices that are scheduled in each round is shown
in Fig. 7(b) and Fig. 7(c), respectively. Clearly, a smaller
SNR threshold helps to save communication energy, and thus
more devices can be scheduled in each round. However,
the cumulative noise might degrade the accuracy or even
diverge the training if the SNR is too low, for instance
when SNR = —10dB. On the other hand, a larger SNR,
such as SNR = 10dB, makes communication more energy-
consuming, which also degrades the training performance due
to fewer participants. A proper value of the received SNR
threshold should be given to balance the negative impact
of noise and the energy consumption. As shown in Fig. 7,
SNR = 7dB is the best choice under our simulation setting.
We compare our proposed algorithm with optimal and
myopic benchmarks under different energy budgets in Fig. 8.

For E = 14J, we set V = 109, and for E = 8J or 10J,
we let V = 5 x 10'!. Our proposed dynamic scheduling algo-
rithm always outperforms the myopic benchmark by achieving
higher accuracy and utilizing energy more efficiently, and
approaches the optimal accuracy as E increases. Moreover,
the accuracy gap between the proposed algorithm and myopic
policy is 2.7%, 1.7% and 0.8% for E = 8, 10 and 14,
respectively, indicating that the dynamic scheduling algorithm
is particularly promising under the energy-limited regime.
We also evaluate the robustness of the proposed dynamic
scheduling algorithm by introducing channel observation
errors, where £ = 8J and V = 5 x 10!, In Fig. 9, the
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optimize the training performance under joint communication
and computation energy limits of devices. Convergence analy-
sis has been carried out showing the importance of device
participation to the training performance, and an energy-aware
dynamic device scheduling algorithm has been developed.
In particular, we have noticed the existence of unobservable
states, mainly the /s-norm of local gradients, for online deci-
sion making in over-the-air FEEL, and proposed an estimated-
drift-plus-penalty solution based on the Lyapunov optimization

Fig. 8. Performance of the proposed algorithm and benchmarks under different energy budgets on CIFAR-10.
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Fig. 9. Performance of the proposed algorithm and myopic benchmark under
different channel estimation errors on CIFAR-10.

first group of bars are obtained without channel observation
error, i.e., iLn’t = hp,. The second to the forth group of
bars suffer inaccurate channel observations. For example,
if the error is 20%, then ilmt is uniformly distributed within
[0.8h), ¢, 1.2h, ;]. A larger observation error further leads to
less accurate energy estimations Emt. However, our main find-
ing is that the proposed algorithm only suffers a tiny accuracy
degradation, which validates its robust training performance
in the practical scenarios. We also mention that the myopic
policy also performs well under different observation errors
compared to the error-free case. Nevertheless, the proposed
algorithm still beats the myopic policy by a significant margin
in all the scenarios.

Finally, we consider a heterogeneous scenario where a total
number of N = 40 devices have different energy constraints,
and use different batch sizes for training. In specific, there
are 20 devices with batch size L; = 64 and per round energy
budget £ = 8J, 10 devices with L, = 128 and E = 16J,
and the other 10 devices with L, = 256 and E = 32J.
The weight parameter V is set to 10'3 for the i.i.d. case,
and 9 x 10'2 for the non-i.i.d. cases. Note that, to implement
the proposed algorithm with different batch sizes, we need to
set the smallest batch size to L; in problem P6, so that the
convergence upper bound still holds. As shown in Fig. 10, the
proposed algorithm still outperforms the myopic benchmark,
with over 3% accuracy improvement under the highly non-
i.i.d. case. At the same time, the energy constraints of devices
are satisfied.

VI. CONCLUSION

We have investigated the device scheduling problem for
FEEL with over-the-air gradient aggregation, aiming to

framework accordingly. We have characterized a theoretical
guarantee for the proposed dynamic scheduling algorithm by
taking the deviation of estimated states into consideration.
Experiments on MNIST and CIFAR-10 datasets have been
carried out to validate the theoretical findings. Compared to
the myopic benchmark, we have shown a significant 4.9%
accuracy improvement on CIFAR-10 for a highly non-i.i.d.
data distribution and stringent energy constraints.

As future directions, heterogeneous data distributions across
devices can be considered, where local datasets represent
different number of classes. We would like to observe if
data diversity of a device should be taken into account
for the scheduling decision. The trade-off between training
delay and energy consumption in over-the-air FEEL, and
the optimization of gradient aggregation policies are worth
further investigation. The impact of the non-convexity of loss
functions on the convergence rate and the device schedule is
another open issue.

APPENDIX A

PROOF OF LEMMA 1

For the simplicity of notation, let g, = ZLflgt be

|B;
the average of the local gradients of scheduled devices, and
P % the noise received at the PS. The global model is

updated according to
wy = w1 — (g + Z1)- (34)

According to Assumption 2, the gap of loss between two
adjacent rounds can be bounded by

F(wt) — F('U)tfl)

l
< VE(w—1) " (wy —wi—1) + §|\wt — w13

S
= =mgi (G, + 20) + <7119, + 213, (35)
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Fig. 10.
constraints.

where g, = VF(w;_1) is the global full gradient in round ¢.

Based on the facts that the channel noise and local gradients
are independent, and each entry in the noise vector z; follows
Gaussian distribution with zero mean and variance o3, we first
take the expectation over the received noise vector z;, and get

Ez, [llg: + 23] = 1115 + E=, [I2:3]

2
- 2 058
= + ; (36)
HgtHQ O'?|Bt|2
Substituting (36) into (35), we obtain
N n?, .
E., [F(w) = F(wi—1)] < —mglg, + =g,
lm ‘735
— . (37
T asp O

Then we take the expectation over stochastic data sampling.
Note that, given w;_1, the full gradient g, is also given, while
g, is stochastic. Accordingly, based on Assumption 1, we get

- Zn gn
B 00 = B [%} =9 (38)
2
Ec.., [I3.13] Ses, Swce,, VI (wi1,2)
Lot g Lb|8t| 2
G2
< lall+ -

Finally, taking the expectation over noise and SGD on the
left hand side of (37), and substituting its right hand side
with (38) and (39), we have

E[F(w;) — F(w¢_1)]
2 G? l ols
- o Inf 2, G 77t _ 905
< —nellgellz + 9 (||91%||2+Lb|3t|>+ 2 af|13’t|2

Iny 9 ln G? 0’05

e (1 2L —07 ).

Tt ( 2 ) ||gtH2 2 Lb|Bt| + J)§2|Bt|2

Since E[F(w;) — F(w;—1)] = E[F(w;)] — E[F(w;-1)],
Lemma 1 is proved.

APPENDIX B
PROOF OF THEOREM 1

By the p-strong convexity of the loss functions
(Assumption 3), the Polyak-Lojasiewicz inequality holds

lg.ll3 > 2p(F(wi—1) — F*). (40)

non-iid (m=1)
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Substituting (40) into Lemma 1, and assuming that 7, < %
(thus 1 — l% > 1), we can obtain

E[F(w;) — F(w;—1)]

Iny , In? G? o35
_ 3 = 4 0%
Mt ( 9 ) Hgt”Q + 2 Lb|Bt| + U%|Bt|2

2
Ui 0gS

- E[F(wi_1)] — — .

nep(E[F (wi—1)] Uf|3t|2>

IN

G2
< e
2 <Lb|Bt|

2
A Nt
Let At = 31 (Lb|6f‘ + ﬁ)ﬁ)’ then

F*)

E[F(w)] = F* < (1 — pme ) (E[F(wi—1)] = F*) + Ay
With recursion, we can prove Theorem 1:
E[F(wy)] — F* < (1 — pne) (E[F(wi—1)] — F7) + 4
< (1= pp) (1 = po—1 ) (E[F (wy—2)] — F™)
+ (1 — pm) A1 + Ay
<o < (B[F(wo)] — F*) ] = pmi)
i=1
+ZA IT (= pm) + A (41)
1=1 j=i+1
APPENDIX C

PROOF OF THEOREM 2

Lety,: = 5ntEnt—— and g, + = 5ntEnt— = . Define
the error of estimated energy consumption at dev1ce n in the
t-th round as 6n,t £ Bn,tEn,t - ﬁn,tEn,t = Un,t — Yn,t, With
maximum absolute value §, £ maX{mt}{ En’t — Ent‘}
According to the evolution of the virtual queue, which is
defined in (25), it is easy to prove that ¢ ;| < (gn,¢ + Yn.it)”
and Yn.t < G i1 — G-

Define the Lyapunov function as L(t) £ 2 3G .
the Lyapunov drift of a single round as A;(t) = L(t
L(t), which is given by

and

1)-

N
1
A(t) = L(t+1) - Z( G~ 50 )
1
N1
§;<2ynt+%tynt> 90+quym, (42)
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where o 2 Y 162 and §,, £ max; {|y,|}. By adding

VU, on both sides of (42), an upper bound on the single-round
drift-plus-penalty function is given by

N
A (t)+ VU <60y + Z Gn,tYn,e + VU;

n=1

N B,
= 0o+ Z Gnt | BniBn — T +VU;

n=1

(43)

N
=6y + Z In,t (Unt — One) + VU

n=1
N ) B,

= 0o+ Z Gnt | BniBnt — Ony — T +VU;. (44)
n=1

The classical drift-plus-penalty algorithm of Lyapunov opti-
mization aims to minimize the upper bound of A;(¢) + VU,
as shown in (43). Since we do not have the exact value of £, ;,
we instead minimize the estimated-drift-plus-penalty, as shown
in (44).

Define the T-round drift as Ap £

L(T+1)—-L(1) =
Zﬁle %q%T 4 1- Then the T'-round drift-plus-penalty function
can be bounded by:

T
AT+VZUt

t=1

T N
<Z<90+Z(Intynt >+VZUt
t=1 n=1

T N
0T+ <Z Gntlnt + VU =Y Gnidn t> (45)

t=1 \n=1 n=1

*

We use superscript to represent the optimal offline
solution of P4 (o, is not an optimization variable), super-
script T to represent the classical drift-plus- penalty algorithm,
ie, mingg, VU + Z 1 Bnt@niEnyt, and ¥ to repre-
sent our proposed estimated-drift-plus-penalty algorithm that
solves P6.

The T-round drift-plus-penalty is bounded by:

T
Al +VZU*

<~v~
H

4n, tyn (VU - Z Qn,t‘si,t>
n=1

o
Il
-

1

3
Il

Mz

A: \/\

+ +
NERINE
/N N
Mz

N
qn, tyn + VUT Z qn,t6i1t>
n=1

o~
Il
-

1

N
dn, yn ¢ T 5 ) +VU§ _Z qui&z,t)

n=1

=g

o~
Il
i
3
Il
i

Mz

|| [l
>
~

7 +

= L[]~

/\ N

M= L
M= |

ntynf+VUT+ant(nt 5 ))

n=1

o+

—
N

N
00T + qn,ty:;t + VU] 426 Z qn,t> . (46)

1 n=1

o
Il
-

n

Inequality (a) holds because optimally solving P6 yields a
minimum value 25:1 qnﬂ‘/?ﬁz,t + VU} for each t. Inequality
(b) holds since the drift-plus-penalty algorithm achieves the
minimum value of Zgzl Gn,tYn,t + VU, and thus plugging
in the optimal offline policy on the right-hand-side increases
the value.

Now we bound the right-hand-side of (46). Note that
Ont+1 — Qn,t < Op,Vt,n, and thus

t—1
qn,t = 4n,t — dn,1 = Z(an—-i-l - Qn,r) < (t - 1)0n7
T=1
47)
WtV s = (Gt — @)y s < (E—1)07. (48)

Substituting (47) and (48) into (46) yields

T
AL+ U
t=1
T
<OT+V Y Ui +

t—l 92“5022 (t—1)0

tlnl

HMZ

T
{ P
=0T +V Y U +60T(T 1)+ T(T — 1)6024%
=V Uf+6T°+T

N
(T —1)30 > _ bn.
t=1 n=1

Notice that AiT > 0, (32) in Theorem 2 can be derived
from (49) by dividing both sides by V. As U, > 0, and for
Vn, %qthH < Ar, we get

T T T
Zyn,t = Zﬁn,tEn,t - En < Z qn,t+1 — Q4n
t=1 t=1 t=1

T
(49)

t = Qn, T+1
< V2A7
T N
= |2V > Uf + 20072 4+ 2T(T = 1)60 > 0.
t=1 n=1

Thus eq. (33) in Theorem 2 is proved.
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