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Abstract—Distributed computing can well exploit the com-
putation resources in edge and cloud for many applications
of large-scale machine learning, which also raises concerns on
data privacy and straggling effect. A promising method to
address these issues is using codes. In our work, we design
a general computation framework that incorporates multi-stage
computing tasks with multiple inputs and can be expressed as
a multi-variable arbitrary-degree polynomial function f , with
N distributed servers as workers, over a batch of data D
that consists of data from different sources. We propose a
privacy-preserving and straggler-robust coding scheme based
on Lagrange polynomials, which can address up to S straggling
workers and up to L colluding workers. We prove the optimality
of the proposed scheme in terms of downlink communication
efficiency, defined as the amount of bits of desired results versus
that of the downloading results, and obtain an explicit expression
of the capacity: C = N−S−d(L−1)−1

d(N−S)
, which is the supremum

of downlink communication efficiency over all feasible encoding
schemes, and d is the degree of function f .

I. INTRODUCTION

The ever-growing amount of data on various devices makes
local processing difficult, especially in large-scale machine
learning applications. A promising method is to disperse
the data to nearby servers acting as workers and perform
computation in parallel [1]. However, imperfect computing
and networking conditions bring time uncertainties in the
result feedback from workers, called straggling effect. To
solve this issue, researchers have proposed to use codes [2] to
speed up the process via adding redundancy of computation
resources among workers. Meanwhile, how to guarantee
the privacy and security of distributed computing is also a
major concern, i.e., keeping the original data private against
malicious servers.

Matrix multiplication is widely considered as one of the
major applications in coded computing, especially for ma-
chine learning. Recently, Yu et al. [3] have proposed a
coding strategy named entangled polynomial code, where
original matrices are divided into submatrices of equal size
to encode based on polynomials. Similarly, Aliasgari et al.
[4] have proposed a secure generalized PolyDot code for
matrix multiplication with additional security and privacy
constraints.

In coded computing, the utilization efficiency of computa-
tion, storage and communication are key metrics. Chang et al.
[5] consider maximizing downlink communication efficiency,
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the supremum of which is called capacity, by exploiting a
naive polynomial coding strategy. Also, the privacy constraint
on one part of the involving data matrices, i.e., A of matrix
multiplication AB, is discussed in [5]. Similarly, Kakar et al.
[6] focus on the maximum downlink communication rate
and have proposed a coding strategy based on polynomials
with privacy constraints on both sides of data matrices, i.e.,
A and B. Besides, a variety of recent related work has
studied other aspects of distributed coded computing, such
as heterogeneous servers [7], [8], algebraic structures of
computation tasks [9], exploiting stragglers [10], combination
with federated learning [11], [12], and computation resources
allocation [13].

Coding schemes for matrix multiplication based on poly-
nomials have been shown to have satisfying performance in
terms of communication load and computation latency [3]–
[6]. However, when computing tasks considered are more
complicated or multi-stage, e.g., neural network training and
inference, the above coding schemes [3]–[6] are not suitable.
A more general computing framework are proposed in [14],
which encapsulates matrix multiplication and gradient com-
putation in machine learning. Nevertheless, the computing
framework in [14] only considers the privacy and security
constraints on only one part of the input data when reduced
into matrix multiplication, and is not applicable to multi-
variable computing functions.

To justify the motivation of considering multi-variable
functions, we take neural network inference tasks as an
illustrating example. The inputs include the sample data
and model data that come from users and the data center
respectively, and all needs to be private and secure. If we
regard the computation of each layer in the neural network as
one stage of an inference task, the entire task is a multi-stage
computing task with multiple inputs, which can be expressed
as a multi-variable arbitrary degree polynomial function.

In this paper, we design a general computation framework
and propose a privacy-preserving and straggler-robust coding
scheme based on Lagrange polynomials for the framework.
In particular, our contributions include:

• We have found from the example of neural network
inference that if matrix multiplication in single layer
can be regarded as distributed computing tasks, we need
perform many rounds of communication and compu-
tation to obtain final results. Therefore, we design a
general computation framework to represent the end-to-
end computing tasks as a multi-variable arbitrary-degree
polynomial function and reduce the communication load

2021 IEEE/CIC International Conference on Communications in China (ICCC)

978-1-6654-4385-2/21/$31.00 ©2021 IEEE 664

20
21

 IE
EE

/C
IC

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

ns
 in

 C
hi

na
 (I

CC
C)

 |
 9

78
-1

-6
65

4-
43

85
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
CC

52
77

7.
20

21
.9

58
02

06

Authorized licensed use limited to: Tsinghua University. Downloaded on February 08,2022 at 03:38:54 UTC from IEEE Xplore.  Restrictions apply. 



of interactions between consecutive rounds.
• We prove that the privacy-preserving and straggler-

robust coding scheme based on Lagrange polynomials
can preserve the privacy of all input data instead of
partial data. Additionally, we prove that the coding
scheme is optimal in terms of downlink communication
efficiency, defined as the amount of bits of desired
results versus that of the downloading results, and obtain
an explicit expression of the capacity which is the
supremum of downlink communication efficiency over
all feasible encoding schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Compute a J-variable polynomial function f := U → V
over a batch of data D = (D1, D2, . . . , Dk, . . . , DK), where
U and V are multidimensional spaces over a sufficiently large
field F, and Dk ∈ U, k ≥ 1 are equal-size parts of the
input data D divided in advance for distributed computing.
Each Dk consists of J input variables that can come from
J sources, i.e., Dk = (Dk,1, . . . , Dk,j , . . . , Dk,J), Dk,j ∈
Fmj×m

′
j , which also means that the J variables do not need

to be matrices of the same size. Obviously, the dimension of
U, denoted by U , satisfies that U =

∑J
j=1 mjm

′

j .
For each round of distributed computing, the goal is to

compute K results, i.e., {f(Dk)}Kk=1. The degree of the
polynomial function f is defined as the maximum order of
its monomials, denoted by d. Here is a simple 6-variable
3-degree polynomial function for example:

f(Dk) = ADk,4Dk,3Dk,1 + BDk,6Dk,5Dk,2 (1)

where A and B are coefficient matrices. Without considering
the existence of activation functions, the above polynomial
function can be regarded as a comprehensive result of two
neural network inference tasks, where Dk,1, Dk,2 serves as
sample data from users and Dk,3 to Dk,5 serve as model data.
Furthermore, after using polynomial functions to approximate
nonlinear activation functions, the inference tasks can still be
expressed as such multi-variable polynomial functions.

As Fig.1 shows, we assume that the computation is dis-
tributed to N workers due to limited energy and computation
resources on users’ devices. Considering the unreliable chan-
nels and the uncertain computation capabilities of workers,
some of them may fail to send results back to the user
in time, which are referred to as stragglers. Without loss
of generality, we assume that the maximum number of
stragglers that can be tolerated is S, and use the index set
S = {n1, n2, . . . , nN−S} ⊆ [1 : N ], |S| = N − S to denote
the first N − S workers that successfully return results.

We also assume that workers are honest but curious, i.e.,
they will send back the right computing results but there are at
most L colluding workers which can communicate with each
other and attempt to learn something about the data D. We
call them colluders. The number of colluders is L′, L′ ≤ L,
and the user does not know which L′ workers collude. We
use the index set L = {l1, l2, . . . , lL′} ⊆ [1 : N ], |L| = L′ to
denote the colluding workers.

In order to preserve the privacy of computation as well
as combating stragglers, the data sent to workers needs to
be encoded. The actual input data that worker n receive is
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Fig. 1. Distributed Computing System Model.

denoted by D̃n = g(D1, D2, . . . , DK , xn), n ∈ [1 : N ],
where g is the encoding function and xn is a coding parameter
used for worker n, and D̃n has the same dimension as
Dk. Consequently, workers should compute N results, i.e.,
{f(D̃n)}Nn=1 instead of K original desired results, and return
them to the user.

For the convenience of analysis, we denote the corre-
sponding encoded data sent to workers in the subset S
and L by D̃S := (D̃n1 , D̃n2 , . . . , D̃nN−S

) and D̃L :=

(D̃l1 , D̃l2 , . . . , D̃lL′ ), respectively. Hence, the information-
theoretic privacy-preserving constraint can be written as

I(D1, D2, . . . , DK ; D̃L) = 0, (2)

where I(·) is the mutual information function.
To evaluate the performance of coding schemes in terms

of using as few communication resources as possible, we
define a key capacity metric called downlink efficiency [5]. It
is the ratio of the bits of the desired result f(Dk), to the
communication load of downloading results from workers
f(D̃n):

R =

∑K
k=1 H(f(Dk))∑
n∈S H(f(D̃n))

. (3)

Accordingly, capacity C is defined as the supremum of the
downlink efficiency R over all feasible coding schemes that
can address up to L colluders and up to S stragglers.

III. MAIN RESULT AND PROOF

In this section, we first provide a lower bound of the
capacity and then obtain the converse through the recovery
threshold, which is defined as the minimum number of
workers required to recover desired computing results.

A. The lower bound of the capacity

Theorem 1. For an (N,S, L, f) distributed computing prob-
lem, where N is the number of workers, S,L is the maximum
number of stragglers and colluding workers that can be
tolerated, respectively, and f is a multi-variable arbitrary-
degree polynomial computing function, we have the following
lower bound on the capacity C:

C ≥ N − S − d(L− 1)− 1

d(N − S)
. (4)

where d is the degree of f .

We prove Theorem 1 by describing an achievable scheme
that can guarantee the decodability and information-theoretic

2021 IEEE/CIC International Conference on Communications in China (ICCC)

665Authorized licensed use limited to: Tsinghua University. Downloaded on February 08,2022 at 03:38:54 UTC from IEEE Xplore.  Restrictions apply. 



privacy. By showing the downlink efficiency of the scheme
R = N−S−d(L−1)−1

d(N−S) , we obtain a lower bound of the
capacity.

The coding scheme is inspired by the Lagrange coding
proposed in [14]. Note that target computing tasks are
{f(Dk)}Kk=1 and each Dk consists of J input variables, i.e.,
Dk = (Dk,1, . . . , Dk,j , . . . , Dk,J), Dk,j ∈ Fmj×m

′
j . Input

data are preprocessed using the following encoding function
based on Lagrange polynomials:

g({Dk,j}Kk=1, x) :=
K∑

k=1

Dk,j ·
K+L∏

i=1,i6=k

x− bi
bk − bi

+
K+L∑

k=K+1

Zk,j ·
K+L∏

i=1,i6=k

x− bi
bk − bi

, (5)

where {bi}K+L
i=1 are (K + L) distinct elements chosen from

F, and {Zk,j}K+L
k=K+1 are uniformly random matrices chosen

from Fmj×m
′
j . Note that Di,j = g({Dk,j}Kk=1, bi), i ∈ [1 :

K] and

f(Dk) = f(Dk,1, . . . , Dk,j , . . . , Dk,J)

= f(g({Dk,1}Kk=1, bk), . . . , g({Dk,J}Kk=1, bk)), (6)

due to the property of Lagrange polynomials.
We then select N distinct elements {an}Nn=1 from F and

ensure that {an}Nn=1∩{bi}K+L
i=1 = ∅, and the input data sent

to worker n is encoded as D̃n = (D̃n,1, . . . , D̃n,j , . . . , D̃n,J)

and D̃n,j = g({Dk,j}Kk=1, an). Hence the result returned by
worker n is:

f(D̃n) = f(D̃n,1, . . . , D̃n,j , . . . , D̃n,J)

= f(g({Dk,1}Kk=1, an), . . . , g({Dk,J}Kk=1, an)). (7)

The results received by the user are {f(D̃n)}n∈S , |S| = N−
S.

For the sake of illustration, we use f(g(x)) to denote
f(g({Dk,1}Kk=1, x), . . . , g({Dk,J}Kk=1, x)). It is easy to see
that f(g(x)) is still a polynomial function about x because
both f and g are polynomial functions, and the degree
satisfies degf(g(x)) ≤ d · (K + L − 1). There are at least
N − S workers that successfully return results, which also
correspond to evaluation points of the polynomial function
f(g(x)) that the user obtains. Consequently, if we choose a
suitable size of input data batch D, i.e., K = N−S−d(L−1)−1

d ,
such that the following inequality can be satisfied:

N − S ≥ degf(g(x)) + 1, (8)

which means enough evaluation points of the polynomial
function f(g(x)) are obtained by the user to recover poly-
nomial function parameters. As a result, the desired result
f(Dk) = f(g(bk)), k ∈ [1 : K] can be determined easily and
the decodability is satisfied.

As for the downlink efficiency and capacity, since we can
get the K desired items {f(Dk)}Kk=1 out of the N − S
returned items, and the desired result f(Dk) has the same
data size (in bits) as the downloaded result f(D̃n) , the
achievable downlink efficiency for this scheme can be written
as

R =
K

N − S
=

N − S − d(L− 1)− 1

d(N − S)
, (9)

which serves as a lower bound of the capacity C.
Besides, to show the proposed scheme can preserve the

privacy, we have to prove

I(D1, D2, . . . , Dk; D̃L) = 0.

To show this, we have:

I(D1, D2, . . . , DK ; D̃L) = H(D̃l1 , . . . , D̃lL′ )

−H(D̃l1 , . . . , D̃lL′ |D1, D2, . . . , DK),

(a)
= H(D̃l1 , . . . , D̃lL′ )−

J∑
j=1

H(ZK+1,j , . . . , ZK+L,j),

(b)
= H(D̃l1 , . . . , D̃lL′ )−

J∑
j=1

L ·mjm
′

j · log |F|,

≤ H(D̃l1) + · · ·+ H(D̃lL′ )−
J∑

j=1

L ·mjm
′

j · log |F|,

(c)

≤
J∑

j=1

L′ ·mjm
′

j · log |F| −
J∑

j=1

L ·mjm
′

j · log |F|

≤ 0 = 0. (10)

where (a) is due to the fact that all random matrices
{Zk,j}K+L

k=K+1 are independent of the input data {Dk}Kk=1,
(b) is because that the entropy of each element in random
matrices equals log |F|, and (c) follows that the upper bound
of the entropy of each elements in D̃l(·) equals to log |F|.
B. Converse

In this part, the upper bound of the capacity is derived
from the following theorem.

Theorem 2. For an (N,S, L, f) distributed computing prob-
lem, where N is the number of workers, S,L is the maximum
number of stragglers and colluding workers that can be
tolerated, respectively, and f is a multi-variable arbitrary-
degree polynomial computing function, the size K of the input
data batch (D1, , D2, . . . , Dk, . . . , DK) satisfies:

K ≤ N − S − d(L− 1)− 1

d
. (11)

where d is the degree of f , and the encoding scheme is linear.

Consequently, we have an upper bound on the downlink
efficiency of f :

R =
K

N − S
≤ N − S − d(L− 1)− 1

d(N − S)
. (12)

And the capacity C has the same upper bound because it is
the supremum of R.

Hence, with the lower bound in Theorem 1, we conclude
that the capacity for an (N,S, L, f) distributed computing
problem is:

C =
N − S − d(L− 1)− 1

d(N − S)
. (13)

The proof of Theorem 2 is presented in Section IV. As
for the linearity of the encoding scheme, it means that the
encoded data is a linear combination of original input data,
i.e., D̃n =

∑K
k=1 Gn,kDk + Z̃n, n ∈ [1 : N ], where G ∈

FN×k is defined as the encoding matrix corresponding to the
aforementioned encoding function g(x) and Z̃n is the additive
randomness.
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IV. PROOF OF THE UPPER BOUND OF THE CAPACITY

In Section III-B, we found the key to the upper bound
of the capacity is the maximum size K of the input data
batch. Meanwhile, we note that maximizing the size of input
is equivalent to minimizing the number of required workers,
which means that we can obtain the maximum number K
from the minimum number (N−S) of workers that send back
results successfully. This term is also known as the recovery
threshold. Similar work has been done in [14], but in this
paper we provide an alternative but more rigorous proof and
extend to a general computation framework that incorporates
multi-stage computing tasks with multiple inputs. First, The
definition of recovery threshold is as follows:

Definition IV.1. In the framework of distributed computing,
the recovery threshold is the minimum number of workers that
successfully return computed results, required to guarantee
decodability.

To simplify the problem further, we first add some con-
straints on the function f , and derive a weakened result
under the condition of multilinearity. After that, in order to
extend to the case of a general polynomial function, we give
a construction of multilinear functions based on polynomial
functions. The above two steps are explained in Section IV-
A and IV-B, respectively. They enable the converse, and the
proof is completed in Section IV-C.

A. Conclusion with multilinearity constraints

With the assumption of the multilinearity of f , we derive
the recovery threshold in the following lemma.

Lemma 1. For an (N,S, L, f) distributed computing prob-
lem, where N is the number of workers, S,L is the maximum
number of stragglers and colluding workers that can be
tolerated, respectively, where f(X1, X2, . . . , XJ) is a multi-
variable multilinear polynomial function. The degree of f is
d, the size of the input data batch is K, and the recovery
threshold is denoted by Rec. If the number of input variables
J also equals to d, we have:

Rec ≥ d(K + L− 1) + 1, (14)

when the encoding scheme is linear.

To prove Lemma 1, we first give the definition of a
multilinear polynomial function f .

Definition IV.2. For a multilinear polynomial function
f(X1, . . . , Xj , . . . XJ), X1, . . . , Xj , . . . XJ are its J input
variables, and f is linear with respect to each variables.

Obviously, due to the multilinearity, the maximum order
for each input variable Xj cannot be greater than 1, so the
degree of f denoted by d satisfies d ≤ J . The property
also helps the construction in Section IV-B and the proof
of Lemma 2.

With the above preparation, we consider such a
multilinear function f discussed in Lemma 1. The
task is to compute {f(Dk)}Kk=1 over the input data
batch D = (D1, D2, . . . , Dk, . . . , DK), and Dk =
(Dk,1, Dk,2, . . . , Dk,d) denotes the d input variables of f ,
meaning that the number of input variables equals to d.

Suppose L = 0, which means that there are no colluding
workers, then what we need to prove is transformed into
Rec ≥ d(K− 1) + 1. In the end of the proof, it is found that
the size of input data K can be replaced by (K +L) without
loss of generality. Here we use mathematical induction to
prove Rec ≥ d(K − 1) + 1.

1) First step: If d = 1, we need to prove Rec ≥ K. As we
mentioned previously, the encoding scheme can be expressed:

D̃n =
K∑

k=1

Gn,kDk, n ∈ [1 : N ], (15)

where N is the number of workers. The additive ran-
dom matrices Z̃n is ignored temporarily because we
do not consider colluding workers at present. And
{D̃n1

, . . . , D̃nr
, . . . , D̃nRec

} are the encoded data corre-
sponding to the first Rec workers that are able to return
results, which are formulated as follows:

D̃nr
=

K∑
k=1

Gnr,kDk, r ∈ [1 : Rec]. (16)

We prove Rec ≥ K by contradiction. Assuming Rec < k,
the new encoding matrix corresponding to the Rec results
G′ = {Gnr,k}Rec×k cannot be column full rank due to
Rec < k. As a result, there are non-zero elements in the
null space of G′, which means workers can receive the
same encoded data {D̃nr

}Rec
r=1 and the user can receive the

same results {f(D̃nr
)}Rec

r=1 for different {Dk}Kk=1, and this
contradicts the decodability. Hence, we have proved the case
for d = 1.

2) Second step: We assume the correctness of Rec ≥
d(K− 1) + 1 for d = d0, and consider a multilinear function
f(Dk,1, Dk,2, . . . , Dk,d0

, Dk,d0+1), k ∈ [1 : K] with degree
(d0 + 1). In order to connect with the case for d = d0, we
construct a multilinear function f ′ with degree d0, which
satisfies the following mapping:

f ′(Dk,1, Dk,2, . . . , Dk,d0
)

=f(Dk,1, Dk,2, . . . , Dk,d0
, X̄k), k ∈ [1 : K]. (17)

Besides, we use Recf and Recf ′ to denote the recov-
ery threshold of f and f ′, which means that there ex-
ists a scheme that can guarantee the decodability of
f(Dk,1, Dk,2, . . . , Dk,d0

, Dk,d0+1), k ∈ [1;K] with the re-
turned results of any Recf workers, and the same for f ′.

We have Recf ′ ≥ d0(K − 1) + 1 because the de-
gree of f ′ is d0. If we can prove the decodability of
f ′(Dk,1, Dk,2, . . . , Dk,d0), k ∈ [1 : K] with the returned
results of (Recf −K) workers, we can deduce that Recf −
(K − 1) ≥ Recf ′ and complete the proof of the Second step
in induction.

Recalling the linearity of the encoding scheme, we expand
it into matrix form D̃ = GD as follows for clearer illustra-
tion, and take the multiple input variables into account. D̃1,1 · · · D̃1,d0+1

...
. . .

...
D̃N,1 · · · D̃N,d0+1

 =

 G1,1 · · · G1,K

...
. . .

...
GN,1 · · · GN,K


·

 D1,1 · · · D1,d0+1

...
. . .

...
DK,1 · · · DK,d0+1

 . (18)
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From the perspective of the matrix multiplication, each row of
G corresponds to the encoded data that one worker receives.
Due to the fact that G must be column full rank, we can
choose K rows of G to construct a new matrix GB , of which
rows are a set of basis of FK . The corresponding workers of
the rows are denoted by the set K, |K| = K.

Owing to the relationship between f and f ′ shown in
(17), the decodability of f ′(Dn,1, Dk,2, . . . , Dk,d0

), k ∈
[1 : K] is equivalent to the decodability of
f(Dk,1, Dk,2, . . . , Dk,d0 , X̄k), k ∈ [1 : K]. Consequently,
the user can choose {X̄k}Kk=1 according to the following
equation:  0

...
0


K×1

= GK×K
B ·

 X̄1

...
X̄K

 . (19)

Since rows of GB form a set of basis of FK , GB is non-
singular and {X̄k}Kk=1 must be a zero vector. In fact, if
there exist random matrices Z̃ to combat colluding workers,
{X̄k}Kk=1 still exist and are unique due to the property of
GB . Accordingly, the (d0 + 1)th variable of encoded data
that workers in K receive is 0, and these workers will return
constant 0 due to the multilinearity of f .

Hence, f(Dk,1, Dk,2, . . . , Dk,d0 , X̄k) is decodable with
results from only (Recf −k) workers, which also guarantees
the decodability of f ′(Dk,1, Dk,2, . . . , Dk,d0

). The proof of
the Second step is completed.

We have proved Rec ≥ d(K−1)+1. Note that the purpose
of adding random matrices Z̃ is to combat up to L colluding
workers. Z̃ can be decomposed into a linear combination of
random vectors of uniform size as follows:

D̃n =

K∑
k=1

Gn,kDk + Z̃n

=

K∑
k=1

Gn,kDk +

K+M∑
k=K+1

G
(∗)
n,kZk, n ∈ [1 : N ]. (20)

Accordingly, we can take the M random matrices
{Zk}K+M

k=K+1 as additional input data by adding new columns
{G(∗)

n,k}
K+M
k=K+1 into G. Thus the encoding scheme can still

be expressed as the form like D̃ = G∗D∗, where G∗ and
D∗ are the new encoding matrices and the new input data,
respectively. The size of D∗ equals (K + M). Therefore,
replacing K with (K + M) does not change the correctness
of the original inequality.

Meanwhile, the M added random matrices should guaran-
tee the privacy constraint, that is:

I(D1, D2, . . . , DK ; D̃L) = H(D̃l1 , . . . , D̃lL′ )

−H(D̃l1 , . . . , D̃lL′ |D1, D2, . . . , DK),

≤
J∑

j=1

L′ ·mjm
′

j · log |F| −
J∑

j=1

M ·mjm
′

j · log |F|

≤ 0 = 0. (21)

where the derivation is similar to that of (10). Since we have
L′ ≤ L, the privacy constraint is satisfied if and only if M ≥
L. Consequently, we conclude that Rec ≥ d(K+M−1)+1 ≥
d(K + L− 1) + 1 and complete the proof of Lemma 1.

B. The construction of multilinear functions

In Section IV-A, we have derived a weakened result with
multilinearity constraints. In order to generalize to the case
of polynomial functions, we give a construction method of
multilinear functions as the following lemma:

Lemma 2. For a general polynomial function f with degree
d, f ′ is a d-variable multilinear polynomial function con-
structed based on f and satisfies:

f ′(D1, D2, . . . , Dd) =
∑
T ⊆[1:d]

[(−1)|T |f(
∑
k∈T

Dk)], (22)

where f ′ is linear with respect to each input variable, T is
a subset of the set [1 : d] and the degree of f ′ also equals to
d.

In order to prove Lemma 2, we have to prove the order
of each variable in f ′ is at most 1 due to the multilinearity
of f ′. Therefore, if the coefficients of higher-order terms in
the multilinear polynomial function f ′ equals 0, the proof is
completed.

For any j ∈ [1 : d], we use h(Dj) to denote a general
higher-order term in f ′. In h(Dj), the order of Dj is greater
than 1. And h(Dj) consists of {Dj , Dj1 , Dj2 , . . . , Djm}
through multiplication.

Obviously, the number of subset T that includes
{j, j1, j2, . . . , jm} is 2(d−m−1), and the constant coefficients
of h(Dj) are the same for these different T in the calculation
result of f(

∑
k∈T Dk). We only need to consider the impact

of (−1)|T |.

Note that for i ∈ [0 : d−m−1], there are
(

i
d−m− 1

)
subsets T that meet above conditions and include extra i
variables except for {j, j1, j2, . . . , jm}. Consequently, any
coefficient of h(Dj) denoted by Coeffj can be obtained as
follows:

Coeffj =
∑

{j,j1,j2,...,jm}⊆T ,T ⊆[1:d]

(−1)|T |,

=
d−m−1∑

i=0

(
i

d−m− 1

)
(−1)m+1+i,

= (−1)m+1 ·
d−m−1∑

i=0

[(
i

d−m− 1

)
1d−m−1−i(−1)i

]
,

= (−1)m+1 · (1− 1)d−m−1 = 0, (23)

which completes the proof of Lemma 2.

C. Proof of Theorem 2

To prove Theorem 2 based on above two lemmas, we
consider a general polynomial function f with degree d.
The minimum number of workers required to recover the K
desired results is denoted by Rec(f,K,L), where L is the
maximum number of colluding workers that can be tolerated.

Then, we construct a multilinear function f ′ according to
Lemma 2 as follows:

f ′(D1, D2, . . . , Dd) =
∑
T ⊆[1:d]

[(−1)|T |f(
∑
k∈T

Dk)], (24)

and similarly, Rec(f ′,K, L) denotes the recovery threshold
for f ′.
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Note that f ′ is a linear combination of functions
f(
∑

n∈S Dn) and has the same degree as f . Therefore, given
the linearity of the encoding scheme, any scheme for f can
be directly applied to f ′. In fact, the only constraint for f
is that f must be a polynomial function, which also holds
for f ′. Hence, the k desired results of f ′ can be recovered
with Rec(f,K,L) workers by using the same computation
scheme with f , which means Rec(f,K,L) ≥ Rec(f ′,K, L).

According to Lemma 1, we have Rec(f ′,K, L) ≥ d(K +
L−1)+1 because f ′ is a multilinear function with degree d.
Besides, the actual number of results returned by workers is
(N −S), which must be greater than the recovery threshold.
Consequently, we have

N − S ≥ Rec(f,K,L) ≥ Rec(f ′,K, L) ≥ d(K + L− 1) + 1.

As a result, K ≤ N−S−d(L−1)−1
d is derived, which completes

the proof of Theorem 2.

V. CONCLUSION

We have studied the private distributed computing problem
and designed a general computation framework that incor-
porates multi-stage computing tasks with multiple inputs,
which can be expressed as a multi-input arbitrary-degree
polynomial function. Then we propose a privacy-preserving
and straggler-robustness coding scheme based on Lagrange
polynomial coding, and prove its optimality in terms of
downlink efficiency. Furthermore, we prove the capacity
C = N−S−d(L−1)−1

d(N−S) , where C is the supremum of downlink
communication efficiency over all feasible encoding schemes.
Given the general computation framework, combining coded
computing with federated learning and task offloading are our
future work.
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