
2338 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 7, JULY 2021

Coded Computation Over Heterogeneous Workers With Random Task Arrivals

Fan Zhang , Yuxuan Sun , Member, IEEE, and Sheng Zhou , Member, IEEE

Abstract— Considering the scheduling and allocation of tasks
among multiple servers, distributed machine learning faces the
problem of the straggler effect as well as system heterogeneity,
e.g., the computation time of the slowest worker can be much
longer than that of the normal workers. This letter studies the
distributed online tasks assignment problem under heterogeneous
conditions where different workers have different computing
capacities, in order to minimize the task completion time.
We consider the task scheduling with random task arrivals,
and introduce task cancellation after completion scheme to
clear the unfinished parts after the completion of the task to
further reduce redundant calculations. To address the challenge
of finding the optimal solution, we propose an approximate online
algorithm based on convex optimization and time recursion.
Simulation results show that the proposed algorithm can reduce
the completion delay by over 30% as compared with the one-shot
counterpart, and maintain a relatively stable delay in the case of
fluctuating arrival rates.

Index Terms— Coded computation, online task assignment,
heterogeneous system, convex optimization.

I. INTRODUCTION

THE emerging of big data and the penetration of numer-
ous edge services motivate distributed machine learning,

where a centralized node, called master, can pass computa-
tional data to distributed workers, and then collect their results
to recover the overall computation result. This distributed
architecture allows large amounts of data to be processed at the
same time by parallelization, leading to substantial reduction
of the computing time.

The existence of straggler effect greatly deteriorates the
performance of distributed computing system, due to the het-
erogeneous computing capabilities of workers and the effect of
the slowest worker. Experiments on Amazon Elastic Compute
Cloud show that the speed of some workers may be 5 times
slower than that of other normal workers [1]. This problem can
be addressed by coding to impose redundancy, which allows
a master to recover results from a subset of workers, and
by optimizing task assignment algorithms to balance the task
completion time among heterogeneous workers.

There are different encoding schemes proposed in [1]–[9],
which are applicable to different conditions. For example,
maximum distance separable (MDS) codes are widely applied

Manuscript received February 26, 2021; accepted March 15, 2021. Date
of publication March 22, 2021; date of current version July 10, 2021.
This work is sponsored in part by the National Key R&D Program of
China 2018YFB1800804, by the Nature Science Foundation of China
(No. 62022049, No. 61871254, No. 61861136003), by the China Postdoctoral
Science Foundation No. 2020M680558, by Open Research Fund Program of
Beijing National Research Center for Information Science and Technology,
and Hitachi Ltd. The associate editor coordinating the review of this letter
and approving it for publication was H. Elsawy. (Corresponding author:
Yuxuan Sun.)

The authors are with the Beijing National Research Center for Information
Science and Technology, Department of Electronic Engineering, Tsinghua
University, Beijing 100084, China (e-mail: zhang-f17@mails.tsinghua.edu.cn;
sunyuxuan@tsinghua.edu.cn; sheng.zhou@tsinghua.edu.cn).

Digital Object Identifier 10.1109/LCOMM.2021.3067888

for matrix multiplications [3], [6]–[8], while gradient codes
are used for updating the gradients of machine learning
model [1]. The coding scheme based on discrete avoidance
with MDS coding is proposed in [4]. In [5], the authors con-
sider the multi-level computing network model with tree-like
coding structure. Letter [7] investigates the age performance of
uncoded and coded schemes including repetition coding, MDS
coding, and multi-message MDS coding. The random gradient
coding proposed in [8] improves the performance when strag-
glers are random and abundant. In the case of large data set
and limited computing power, a single-communication-round
coding scheme is proposed in [9] to tune the amount of
computing workloads for each worker in advance.

Different scheduling algorithms are proposed in
[6], [10]–[13]. Workers ranked by their straggling levels
are assigned with different sizes of tasks to exploit the
computing power of stragglers in [6]. In [10], the authors
propose the deterministic scheduling orders for different
workers, namely cyclic scheduling and staircase scheduling
schemes. The assignment of multiple tasks of multiple
masters is further considered in [11]. A task scheduling
algorithm considering task priority is proposed in [12]. The
expected computing time of the distributed algorithm is
analyzed in [13].

However, these works mainly consider the one-shot task
assignment problem i.e., there is only a single task to be
processed, or there are multiple tasks arriving at the same
time. Since distributed machine learning needs to go through
multiple rounds of training and data transmission, and dif-
ferent tasks may co-exist in the system, it is insufficient to
consider the one-shot case. In this work, we focus on the
delay-minimized online assignment of matrix multiplication
tasks randomly arriving at the master, with the following
key contributions: 1) We extend the state-of-the-art one-shot
coded task assignment scenario to a more general case with
random task arrivals, and incorporate the task cancellation
strategy to further improve the system efficiency. 2) We
propose an online task assignment algorithm by recursive
start time approximation and optimal load allocation, which
can be applied to any task arrival process. 3) Simulations
under a time-varying task arrival rate scenario validate that,
the proposed algorithm can achieve lower task completion
delay compared to all benchmarks, and is robust to different
levels of system heterogeneity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Task Encoding

As shown in Fig. 1, we consider a heterogeneous
distributed computing system, where a master can send
matrix-multiplication tasks to N workers N = {1, 2, . . . , N}
with different computing capabilities. The m-th task is
defined as Amxm, where matrix Am ∈ R

Lm×Wm , vector

1558-2558 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 11,2021 at 01:25:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9720-6993
https://orcid.org/0000-0003-3974-1431
https://orcid.org/0000-0003-0651-0071

ZHANG et al.: CODED COMPUTATION OVER HETEROGENEOUS WORKERS WITH RANDOM TASK ARRIVALS 2339

Fig. 1. Illustration of a distributed computing system with random task
arrivals.

xm ∈ R
Wm , Lm, Wm ∈ Z

+, and Z
+ represents the positive

integer set. The arrival time of task m is denoted by t
[a]
m .

In order to reduce the impact of stragglers, the master
encodes the rows of Am through MDS coding. Define the
encoded matrix as Ãm. Then the master assigns each worker
an encoded task, which is represented as Ãm,n ∈ R

lm,n×Wm ,

Ãm =
[
Ã

T

m,1, Ã
T

m,2, · · · , Ã
T

m,N

]T
with Wm, lm,n ∈ Z

+ and∑N
n=1 lm,n ≥ Lm. The subscript (m, n) indicates that it is

the part of the m-th task assigned to the n-th worker, and
lm,n represents the corresponding workload. In view of the
MDS coding, we can recover the result of the m-th task after
collecting any Lm lines of computation from workers.

B. Queueing and Cancellation

At each worker, tasks are processed according to the first-
come-first-serve discipline. Upon the arrival of the m-th task,
the index of the unfinished task with earliest arrival time
in the system is denoted by k, with k ≤ m. Let Qn(t) =
{qk,n(t), . . . , qm−1,n(t), qm,n(t)} be the task queue of the n-
th worker at time t. The cardinality of Qn(t) represents the
number of unfinished tasks in the system, while each element
qj,n(t), j = k, · · · , m represents the remaining load of task j
at worker n. It is easy to see that qk,n(t)≤ lk,n because rows
in the queue are automatically removed after being calculated,
where the inequality holds only for the task at the head of the
queue.

Let t
[a]−
m and t

[a]+
m be the time instances right before

and after the arrival of task m at the master. In this work,
we mainly focus on the computation bottleneck, and assume
that the delay consumed by running the task assignment
algorithm and transmitting the data of coded subtasks can
be ignored. Therefore, t

[a]+
m also indicates the arrival time of

encoded subtask Ãm,nxm at any worker n ∈ N , and

Qn

(
t[a]+
m

)
=Qn

(
t[a]−
m

)⋃
{lm,n}={qk,n(t), lk+1,n, · · · , lm,n}.

To simplify the system, we assume that for each task,
the worker will not transmit the result back to the master
until it finishes the subtask [11]. Therefore, the master will
either receive lm,n results (one result refers to one row of
the multiplication of Ãm and xm) or receive nothing from
worker n at time t, which is denoted as Rm,n(t). We consider
cancellation-upon-completion to remove the unnecessary com-
putations, to be specific, once the master recovers the result of
the m-th task, the unfinished coded subtasks of it are cancelled
with negligible delay. Let t

[e]
k and t̂

[e]
k,n be the completion time

of the whole k-th task and that at worker n, respectively.

Fig. 2. Queue update.

If t
[e]
k < t̂

[e]
k,n, then the remaining load in the queue of worker

n are cleared:

Qn

(
t
[e]+
k

)
=Qn

(
t
[e]−
k

)
\{qk,n

(
t
[e]−
k

)
}={lk+1,n, · · · , lm,n}.

If task m is not the first one in the queue of worker n, then
the remaining task is lk,n, that is, the qk,n(t[e]−k) should be
replaced by lk,n in the equation above. An illustration of the
queue updates is shown in Fig. 2.

C. Task Processing Delay

Referring to the model in [3], [6], [11], we express the
processing time of lm,n results at worker n, denoted by Tlm,n ,
as a random variable with shifted exponential distribution:

P
[
Tlm,n ≤ t

]
=

{
1 −e

− un
lm,n

(t−anlm,n)
, t ≥ anlm,n,

0, otherwise,
(1)

where an >0 is a parameter indicating the minimum process-
ing time for one coded row and un > 0 is the parameter
modeling the straggling effect. Different an and un represent
different computing capabilities.

D. Problem Formulation

Our objective is to minimize the completion time t
[e]
m of

task m, upon which the master can get sufficient results
from workers to recover the computation. We aim to design
a centralized policy to optimize the load allocation {lm,n}
upon the arrival of each task. Comparing to the single-task
assignment policy, we further incorporate the queue state of
each worker for online scheduling. Therefore, the problem is
formulated as minimizing the completion time t

[e]
m of current

task with the information of current queue state Q(t[a]
m):

P1 : min
{lm,n}

E

[
t[e]m |Q(t[a]

m)
]

(2a)

s.t. P

[∑
n

Rm,n(t[e]m) ≥ Lm

]
≥ σ. (2b)

In constraint (2b), σ is defined as the probability that the
master receives at least Lm results, meaning that task m is
finished, until time t

[e]
m . The main difficulty to solve P1 is

that, constraint (2b) is hard to express mathematically as the
combination of returned tasks satisfying

∑
n Rm,n(t[e]m) ≥ Lm

is difficult to be explicitly found in a heterogeneous condition.
Define E

[
Rm(t[e]m)

]
=E

[∑
n Rm,n(t

[e]
m)
]
. To solve this problem,

we replace the probability with the expectation as follow:

P2 : min
{lm,n}

E

[
t[e]m |Q(t[a]

m)
]

(3a)

Authorized licensed use limited to: Tsinghua University. Downloaded on October 11,2021 at 01:25:19 UTC from IEEE Xplore. Restrictions apply.

2340 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 7, JULY 2021

s.t. Lm − E

[
Rm(t[e]m)

]
≤ 0. (3b)

According to [14], the gap between the solutions of P1 and
P2 can be bounded with a single master. The key challenge to
solve P2 is that all the unfinished parts will be cleared when
the task is completed, so it is still arduous to get the arithmetic
expression of E[Rm(t[e]m)].

Observe that if we get the calculation start time of each
subtask at each worker, the challenge mentioned above can
be solved. Define the time starting the computation of task m

at worker n as t
[s]
m,n which is expressed as the larger value

between the previous task completion time t
[e]
m−1,n and the

arrival time t
[a]
m . Define t

[s]
m ={t[s]m,1, t

[s]
m,2 . . . t

[s]
m,N}. The length

of Q(t[a]
m) provides information to calculate the theoretical

completion time t
[e]
m−1,n, for all n ∈ N . Thus, the problem

can be divided into two parts, namely using Q(t[a]
m) to obtain

t
[s]
m−1,n and getting t

[e]
m with t

[s]
m−1,n. Using the expectation

formula, we can convert P2 into two levels of expectation:

P3 : min
{lm,n}

E
t
[s]
m

[
E

t
[e]
m |t[s]

m

[
t[e]m |t[s]

m

]]
(4a)

s.t. Lm−E
t
[s]
m

[
E

Rm(t
[e]
m)|t[s]

m

[
Rm(t[e]m)|t[s]

m

]]
≤0. (4b)

Define the density function of variable t
[s]
m,n as fs

m,n(t), and

fs
m(t) =

∏N
n=1 fs

m,n(t). In this condition, E[Rm(t[e]m)] can be

expressed with the given t
[s]
m :

E
t
[s]
m

[
E

Rm(t
[e]
m)|t[s]

m

[
Rm(t[e]m)|t[s]

m

]]
=
∫

n=1

. . .

∫
n=N(

N∑
n=1

lm,n

[
1−e

− un
lm,n

(t[e]
m −t[s]

m,n−anlm,n)
])

f [s]
m (t[s]

m)dt[s]
m .

(5)

Since the density function fs
m,n(t) depends on the density

function fs
m−1,n(t) of the previous task, the recurrence relation

expression can be obtained from distribution (1):

fs
m,n(t) =⎧⎨
⎩

un

lm,n
e(t−t[a]

m −anlm,n)
∫ t[a]

m

0 fs
m−1,n(t0)dt0, t

[e]
m−1,n ≤ t

[a]
m ,∫ t

t
[a]
m

fs
m−1,n(t0)

(
un

lm,n
e(t−t0−anlm,n)

)
dt0, t

[e]
m−1,n > t

[a]
m .

From the recursion relationship, to obtain the density func-
tion fs

m,n(t), we must calculate the completion time of the
first task in the current queue. Define Ωm ={ωm,1..ωm,r} as a
collection in which

∑
n∈ωm,p

lm,n≥Lm, for p ∈ 1, . . . , r. Ωm

represents the set containing all possible return combinations
of workers to complete task m. The probability can be
illustrated as:

P
t
[e]
1

(t) =
∑

ω∈Ω1

∏
k∈ω

P

(
t
[e]
1,k ≤ t

)
. (6)

Considering that the combination shown in (6) can hardly
be expressed explicitly, the probability distribution of the
completion time of the first task is difficult to solve, and thus
brings difficulties in solving the probability distribution of the
completion time of task M−1.

In the following section, we propose a recursive algorithm
to approximate t

[s]
m .

III. TASK ASSIGNMENT

In this section, we solve P3 by dividing the problem into
two parts. In the first part we propose the optimal allocation
of current task given the start time of calculation, and in
the second part we design a recursive algorithm to approximate
the start time.

A. Assign Tasks With a Given Start Time

When t
[s]
m is given, problem P3 can be expressed as:

P4 : min
{lm,n}

E

[
t[e]m

]
(7a)

s.t. Lm−
N∑

n=1

lm,n

[
1−e

− un
lm,n

(t[e]
m−t[s]

m,n−anlm,n)
]
≤0, (7b)

which is a convex optimization problem.
Define α > 0 as the Lagrange multiplier. The following

solution can be obtained by using the Lagrange multiplier
method and Karush-Kuhn-Tucker condition [11]:

L(t[e]m , α, t[s]
m)=

t[e]m +α

(
Lm−

N∑
n=1

lm,n

[
1−e

− un
lm,n

(t[e]
m −t[s]

m,n−anlm,n)
])

. (8)

So problem P4 can be transferred to:

P5 : min
{lm,n}

L
(
t
[e]
m , α, t

[s]
m

)
. (9a)

Define W−1(x) as the lower branch of Lambert W func-
tion, where x ≤ −1 and W−1(xex) = x. Let φm,n �
1

un

[−W−1(−e−unan−1) − 1
]
.

Theorem 1: With a given start time t
[s]
m =

{t[s]m,1, t
[s]
m,2 . . . t

[s]
m,n}, the optimal allocation l∗m,n and

expected completion time t
[e]
m are given by:

t[e]m =
Lm +

∑N
n=1

t[s]
m,nun

1+unφm,n∑N
n=1

un

1+unφm,n

, (10)

l∗m,n =
t
[e]
m − t

[s]
m,n

φm,n
. (11)

Here we approximate lm,n to a real number l∗m,n.
Proof: See Appendix A.

B. Recursive Solution

We then design a recursive algorithm to approximate t
[s]
m

in this subsection. According to the expression t
[s]
m,n =

max{t[e]m−1,n, t
[a]
m }, we need to calculate two parts, the com-

pletion time of task m − 1 and the arrival time of task m
respectively. Notice that the completion time of task m−1
of each worker cannot be directly calculated, because it is
the minimum time between t̂

[e]
m−1,n which represents the time

worker n completing task m−1 and the completion time of the
whole task t

[e]
m−1. As shown in equation (6), it is hard to get the

probability distribution of the completion time. To reduce the
complexity of the algorithm and avoid unnecessary calculation
burden, we use the result of E

[∑N
n=1 Rm,n(t[e]m)

]
= Lm to

Authorized licensed use limited to: Tsinghua University. Downloaded on October 11,2021 at 01:25:19 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CODED COMPUTATION OVER HETEROGENEOUS WORKERS WITH RANDOM TASK ARRIVALS 2341

approximate the completion time of the whole task t
[e]
m . With

the distribution in (1) and the recursion relationship, we can
obtain:

Lm−1−
N∑

n=1

lm−1,n

[
1−e

− un
lm−1,n

�
t
[e]
m−1−t

[s]
m−1,n−anlm−1,n

�]
=0. (12)

E(t̂[e]m−1,n) = lm−1,n

(
an+

1
un

)
+ t

[s]
m−1,n. (13)

When the task m−1 is the first task in the queue, the remain-
ing task load in the queue should be replaced by qm−1,n(t).
Notice that (12) is a monotone function of t

[e]
m−1, and thus we

can get the explicit value of t
[e]
m−1 under the given constraint

Lm−1 ≤∑N
n=1lm−1,n.

Algorithm 1 Recursive Start Time Approximation and Opti-
mal Load Allocation
1: Input: u = {u1, u2, . . . uN}, a = {a1, a2, . . . aN},

Q(t) = {Q1(t), Q2(t) . . . QN (t)}, L =
{Lk, L2 . . . LM}, t[a] = {t[a]

k , t
[a]
k+1 . . . , t

[a]
m }.

2: for m = k, . . . , M−1 do
3: Approximate t

[e]
m with

4: if m == k then
5: Lm−∑N

n=1 qm,n

[
1−e

− un
qm,n

(t[e]
m−t[s]

m,n−anqm,n)
]
=0.

6: else
7: Lm−∑N

n=1 lm,n

[
1−e

− un
lm,n

(t[e]
m−t[s]

m,n−anlm,n)
]
=0.

8: end if
9: for n = 1, . . . , N do

10: if m == k then
11: E(t̂[e]m,n) = qm,n(an + 1

un
) + t

[a]
m .

12: else
13: E(t̂[e]m,n) = lm,n(an + 1

un
) + t

[s]
m,n.

14: end if
15: if t

[e]
m > E(t̂[e]m,n) then t

[e]
m,n = E(t̂[e]m,n).

16: else t
[e]
m,n = t

[e]
m .

17: end if
18: if t

[e]
m,n > t

[a]
m+1 then t

[s]
m+1,n = t

[e]
m,n.

19: else t
[s]
m+1,n = t

[a]
m+1.

20: end if
21: end for
22: end for

23: t
[e]
M =

LM+
�N

n=1

t
[s]
M,n

un

1+unφM,n�N
n=1

un
1+unφM,n

.

24: for n = 1, . . . , N do

25: l∗M,n =
t
[e]
M −t

[s]
M,n

φM,n
.

26: end for

Combining with the result in Theorem 1, the Recursive
Start Time Approximation and Optimal Load Allocation are
proposed in Algorithm 1. As shown in Lines 2-22, when the
M -th task arrives at the master, the recursive approximation
time for each task m=k, · · · , M−1 is divided into two steps:
1) Use equations (12) and (13) to solve the completion time
t
[e]
m,n, as shown in Lines 3-8. 2) Get the computation start

time t
[s]
m+1,n by comparing t

[e]
m,n with the arrival time t

[a]
m+1,

as shown in Lines 9-22. Finally, we calculate the optimal

Fig. 3. Task completion delay under fluctuating arrival rates.

allocation l∗M,n for the current task M using Theorem 1,
as shown in Lines 23-25. For each task m in the system,
the complexity to calculate the start time is O(N), and thus if
there are M −k tasks remaining in the system, the complexity
of the algorithm is O((M − k)N).

IV. SIMULATION RESULTS

In this section, we evaluate the task completion time of the
proposed Recursive Start Time Approximation and Optimal
Load Allocation under different task arrival rates and compare
the influence of computing capacity. Since the task arrival
time of different algorithms is consistent, to be more intu-
itively, completion delay is shown instead of the completion
time.

We consider N = 20 workers with four benchmarks:
1) Uncoded: Divide each task equally, each worker gets
Lm

N tasks without coding. 2) Mean Capability: According
to the expectation, each worker’s computing capacity can
be regarded as 1

a+ 1
u

. Assign tasks according to the com-

puting proportion, and thus each worker gets Lm

un
anun+1�
n

un
anun+1

rows. 3) Queue-based: Without clearing up unfinished parts,
the expected completion time can be calculated directly
from the queue length. Then allocate the tasks accord-
ing to Theorem 1 given the expected completion time.
4) One-shot assignment: Assign tasks according to Theo-
rem 1 regardless of queue length [11] and clear the unfinished
parts.

The capacity parameter an is randomly selected within
[0.1, 0.5] ms, the straggling parameter un is set as un = 5

an

ms−1, n ≤ 16 and un = 1
5an

ms−1, 17 ≤ n ≤ 20. The length
of the rows of multiplication task, Lm, is randomly between
[1700, 2700] [14].

We show the task completion delay of different algorithms
in the case of varying arrival rates in Fig. 3. The average
task arrival interval for tasks numbered [1-100,400-500] is
0.12s, for tasks numbered [100-200,300-400] is 0.04s, and for
tasks numbered [200-300] is 0.08s. The uncoded algorithm is
not used as a benchmark in this graph due to its large delay.
Comparing the task completion delay with other benchmarks,
the proposed algorithm is more stable and achieves lower
delay. Without considering the queue state, mean capacity
algorithm is the most unstable one. The gap between the
queue-based algorithm and the proposed algorithm validates
the task cancellation upon completion strategy. When the
average arrival interval is 0.04s, the proposed algorithm can

Authorized licensed use limited to: Tsinghua University. Downloaded on October 11,2021 at 01:25:19 UTC from IEEE Xplore. Restrictions apply.

2342 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 7, JULY 2021

Fig. 4. The influence of computing capability distributions of workers on
the average task completion delay.

reduce the completion delay by over 60% as compared
with the mean capacity algorithm, by around 40% over
the queue-based algorithm and by 30% over the one-shot
algorithm.

Fig. 4 shows the impact of difference in computing capabil-
ities among workers. Keeping

∑
n

1
an+ 1

un

and un unchanged

which means the frequency of calculation and the stragglers’
distribution remain the same, we use different distributions of
an to simulate different computing capacities with the arrival
of 0.4s. The x-axis of the Fig. 4 is the ratio of maximum
and minimum computing capability representing heterogeneity
among workers. We use a uniform frequency distribution of
[1,5] of an as the reference frequency. Under the limitation
of frequency and un, the value of an is 1.9175 when the
ratio is 1 and the uniform distribution of [1.381,3.4525] when
the ratio is 2.5. The average completion delay of 300 tasks
shows that the computational difference between workers
has large influence on uncoded and queue-blind algorithms
while our algorithm is robust under different heterogeneous
environments.

In summary, the proposed algorithm performs better than
all the benchmarks and remains stable even with fluctuating
arrival rates. If the queue state is not taken into account,
such as mean-capacity algorithm, then its completion delay
will be unstable. Meanwhile, comparing the proposed algo-
rithm with the queue-based algorithm, the cancellation strat-
egy helps maintain a lower delay by avoiding redundant
computation.

V. CONCLUSION

We have considered an online task assignment problem
in a heterogeneous coded computing system. MDS coding
has been adopted to alleviate the straggler effect and the
cancellation of the unfinished parts after completion of the
whole task has been considered to further improve the effi-
ciency. With the approximate start time, the task optimal
allocation among workers has been proposed. Simulation
results show that the proposed algorithm can reduce the com-
pletion delay by over 30% with one-shot algorithm. We have
also verified the robustness of the algorithm under different
heterogeneous environments with disparate distributions of
computation capabilities. In future work, we plan to take
communication delay and power consumption into account and
consider the efficiency of the multi-message communication
strategy [15].

APPENDIX A
PROOF OF THEOREM 1

The partial derivative of L
(
t
[e]
m , α, t

[s]
m

)
can be derived as:

∂L(t[e]m , α, t
[s]
m)

∂lm,n
=

un(t[e]m − t
[s]
m,n)

lm,n
e
−un(t[e]

m −t
[s]
m,n)

lm,n
+anun − 1

+ e
− un

lm,n
(t[e]

m −t[s]
m,n−anlm,n)

, (14)

∂L(t[e]m ,α,t
[s]
m)

∂α
= Lm−

N∑
n=1

lm,n

[
1−e

− un
lm,n

(t[e]
m−t[s]

m,n−anlm,n)
]
.

(15)

We can get the relationship between t
[e]
m and l∗m,n through

(14) and get the equality: l∗m,n = t[e]
m −t[s]

m,n

φm,n
.

Replacing lm,n in (15) with t
[e]
m :

Lm −
N∑

n=1

t
[e]
m − t

[s]
m,n

φm,n

(
1 − 1

1 + unφm,n

)
= 0. (16)

Finally, the expressions of t
[e]
m and l∗m,n can be obtained.

REFERENCES

[1] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. Int. Conf.
Mach. Learn., Sydney, NSW, Australia, Aug. 2017, pp. 3368–3376.

[2] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Proc.
IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA,
Dec. 2016, pp. 1–6.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[4] E. Ozfatura, D. Gunduz, and S. Ulukus, “Speeding up distributed
gradient descent by utilizing non-persistent stragglers,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Paris, France, Jul. 2019, pp. 2729–2733.

[5] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Tree
gradient coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris,
France, Jul. 2019, pp. 2808–2812.

[6] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018,
pp. 1620–1624.

[7] B. Buyukates and S. Ulukus, “Timely distributed computation with
stragglers,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5273–5282,
Sep. 2020.

[8] R. Bitar, M. Wootters, and S. El Rouayheb, “Stochastic gradient coding
for straggler mitigation in distributed learning,” IEEE J. Sel. Areas Inf.
Theory, vol. 1, no. 1, pp. 277–291, May 2020.

[9] M. Fahim and V. R. Cadambe, “Lagrange coded computing with sparsity
constraints,” in Proc. 57th Annu. Allerton Conf. Commun., Control,
Comput. (Allerton), Monticello, IL, USA, Sep. 2019, pp. 284–289.

[10] M. M. Amiri and D. Gündüz, “Computation scheduling for distributed
machine learning with straggling workers,” IEEE Trans. Signal Process.,
vol. 67, no. 24, pp. 6270–6284, Dec. 2019.

[11] Y. Sun, J. Zhao, S. Zhou, and D. Gündüz, “Heterogeneous coded
computation across heterogeneous workers,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

[12] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi,
“Near-optimal straggler mitigation for distributed gradient methods,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW),
Vancouver, BC, Canada, May 2018, pp. 857–866.

[13] A. Behrouzi-Far and E. Soljanin, “On the effect of task-to-worker assign-
ment in distributed computing systems with stragglers,” in Proc. 56th
Annu. Allerton Conf. Commun., Control, Comput. (Allerton), Monticello,
IL, USA, Oct. 2018, pp. 560–566.

[14] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded
computation over heterogeneous clusters,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 2408–2412.

[15] E. Ozfatura, S. Ulukus, and D. Gündüz, “Straggler-aware distrib-
uted learning: Communication–computation latency trade-off,” Entropy,
vol. 22, no. 5, p. 544, 2020.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 11,2021 at 01:25:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

