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Abstract— Channel state information (CSI) plays a vital role
in wireless communication systems. However, the CSI acquisi-
tion overhead is an enormous obstacle to realize the system
performance improvements promised by massive connectivity
and massive multiple-input-multiple-output (MIMO). To alleviate
this overhead, this paper proposes a remote channel inference
framework by probing the channels occupied by a source base
station (BS) and inferring the channels of target BSs at geograph-
ically separated sites. The work generalizes existing literature
which mainly focuses on utilizing the CSI linear correlations
of adjacent antennas, by adopting a model-free deep learning
framework to investigate non-linear dependence among remote
CSI. The existence of such cross-BS CSI dependence is first shown
by calculating the mutual information between remote channels,
and the Cramér-Rao lower bound of remote CSI inference
performance based on a one-ring channel model. Inspired by
this finding, modern deep learning approaches are leveraged to
perform remote channel inference in heterogeneous networks
for both single user and multi-user scenarios. The simulation
results based on ray tracing data show evident performance
advantages over conventional methods, under both homogeneous
and heterogeneous frequency coverage. The proposed framework
achieves beamformer inference accuracy within 4.6% of the
genie-aided optimum at the cost of sweeping only two beams.

Index Terms— Channel state information, MIMO, deep neural
networks, channel models, beamforming.
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I. INTRODUCTION

CHANNEL state information (CSI) plays a crucial role
in wireless communication systems. Advanced signal

processing techniques for the physical layer in 5G and beyond
systems require accurate and timely CSI for coherent data
decoding and high-dimensional spatial signal operations to
guarantee adequate system performance. High-layer opera-
tions also need CSI for, e.g., user scheduling and mobility
management. On the flip side, due to the high reliance on
CSI of new techniques in multi-antenna use, the channel
acquisition overhead is increasing dramatically, which is a key
limiting factor for system scalability. In particular, deploying
a large number of antennas at the base station (BS), namely
massive multi-input multi-output (MIMO) [3], can achieve a
significant spatial multiplexing gain and diversity gain with
simplified signal processing methods thanks to the channel
hardening effect. However, multiple antennas at both the BS
and user equipment (UE) sides require the estimation of a high
dimensional channel matrix, which adds to the CSI overhead.
Moreover, ultra-dense network (UDN) is proposed to increase
frequency reuse [4]; it can provide a higher coverage proba-
bility, spectral efficiency (SE) and energy efficiency, but the
dense deployment of cells brings about the challenge of high
pilot overhead density. In addition, directional communication
is considered to be essential in small cells and millimeter
wave (mm-wave) based systems to mitigate interference and
enhance signal coverage, which requires CSI between a mas-
sive number of transceivers. Recently, vehicular networks and
air-to-ground networks have been extensively studied [5], [6],
wherein the vehicles or unmanned aerial vehicles (UAVs)
are considered as UEs or mobile BSs. Therein, the high
mobility also increases the time variability of CSI, resulting
in a more frequent CSI acquisition requirement. In summary,
future trends of wireless communications entail substantial
CSI acquisition overhead, and hence novel, more efficient
methods are needed.

Conventionally, in time-division-duplex (TDD) massive
MIMO systems, BSs can obtain the downlink (DL) chan-
nel directly from the uplink (UL) pilots sent by users
thanks to channel reciprocity. In this fashion, the pilot over-
head scales with the number of users [7]. In frequency-
division-duplex (FDD) systems, instantaneous CSI reciprocity
does not exist, as different frequency bands are used for
the UL and DL. In this case, the BS needs to transmit
DL pilots and UEs estimate the DL channels and feed-
back the estimations. As a result, the overhead scales with
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the number of BS antennas. Therefore, the acquisition of
instantaneous CSI in full digital beamforming systems poses
a severe challenge, and hence novel beamforming meth-
ods, such as hybrid beamforming, have been proposed [8].
Hybrid beamforming architectures were first proposed for
reducing the number of radio frequency (RF) chains in massive
MIMO systems, as well as reducing CSI overhead as in [9],
wherein a joint spatial division and multiplexing (JSDM)
scheme consisting of a two-stage beamformer was proposed by
first training the analog beamformer based on the second-order
CSI, and then training the digital beamformer based on the
dimensionality-reduced instantaneous CSI. Recently, analog
beamforming for non-orthogonal multiple access was dis-
cussed in [10], wherein the proposed sub-optimal solution for
power allocation and beamforming can achieve close-to-bound
sum-rate performance.

Faced with the dilemma between the limited spec-
trum resources and the increasing bandwidth requirements,
researchers have become interested in mm-wave bands. Chan-
nels in mm-wave bands show sparsity in angular and delay
domains, hence a line of work exploits methods based on
compressed sensing to recover the sparse MIMO CSI from
on a relatively small number of observations [11]. These
approaches can accurately recover the CSI when the multi-path
components (MPCs) are sparse, at a cost of large compu-
tation overhead. Another set of works consider using beam
search methods to estimate the mm-wave channels [12], [13].
Specifically, the authors build a hierarchical search frame-
work to reconstruct the CSI, wherein the BSs transmit the
beamformed reference signals from a predefined hierarchical
codebook and the UEs feed the signal power back to the BSs.
The candidate beams become narrower during the training
procedure, and finally the exact discrete beam directions can
be found. However, these hierarchical methods suffer from
large beam training time and can only support channels with
a limited number of MPCs. To reduce the channel acquisition
overhead in MIMO systems, a large body of work consid-
ers exploiting the channel correlations. Correlation models
among channels have been studied for over a decade. The
work in [9], [14]–[16], proposes to leverage spatial channel
correlations among co-located BS antennas to reduce the
overhead and shows considerable performance gain. Authors
in [17] utilize the temporal channel correlation to help find
the current channel support based on the previous channel
observations in mm-wave systems. Research in [18] manages
to exploit the UL channel estimations to help learn the DL
channels, essentially relying on the channel correlations in
the frequency domain. In general, these works reduce the
channel estimation overhead based on the channel correlation
in different domains, mainly focusing on exploiting linear
correlations of CSI by leveraging the second-order CSI sta-
tistics. Recently, with the rapid development of deep learning,
deep neural networks (DNNs) have started to be applied
in wireless communications. A model-driven approach for
physical layer operations is proposed in [19]. The work in [20]
predicts the channel fading with the help of a complex-valued
DNN. The work in [21] learns the coordinated beamforming
weights from the UL reference signals with the help of a

convolutional neural network (CNN). Authors in [22] leverage
machine learning techniques to decide the beam directions
from the context information, i.e., the locations of transceivers
and scatterers.

In this paper, we study the CSI dependence among remote
BSs from the same UE and exploit these dependencies for CSI
inference. To the best of our knowledge, the existing literature
seldom explores the possibility that the CSI of one BS can
be inferred by the CSI of remote BSs, since it is generally
assumed that the CSI of geographically separated (beyond
wavelengths) BSs is independent. Our previous work [23]
explored this potential, in which we used supervised learning
to make cross-BS channel inference for the purpose of BS
selection. We extend the work to beamforming design in a
scenario where the BSs are equipped with multiple anten-
nas and the CSI of BSs with no assigned pilot resources,
namely target BSs, can be inferred based on the CSI of
source BSs with pilot resources. In general, the relationship
between remote channels is non-linear and cannot be easily
handled with linear operations. Hence DNNs are introduced
to make the inference, due to their universal approximating
properties on any measurable functions providing adequate
and appropriate training data [24]. As a result, the pilot
resources can be significantly reduced at the cost of training
a DNN offline.1 The main contributions of this work are as
follows:

1) We show dependence among remote CSIs exists, based
on calculating the mutual information from the remote
ray-tracing based CSI data and the Cramér-Rao lower
bound (CRLB) of remote channel inference based on a
one-ring channel model.

2) We propose a remote channel inference framework,
which can reduce the pilot overhead by replacing the
pilot-aided channel estimation procedure by the CSI
inference from an offline-trained DNN.

3) We study beamforming for small cells in heterogeneous
networks as a use case for the framework, and propose
the DNN architectures based on corresponding appli-
cation scenarios and purposes, e.g., whether multi-user
spatial multiplexing is considered. Simulation results
based on ray-tracing data show significant performance
gains over conventional methods. The proposed frame-
work can achieve a performance loss of 4.60% compared
with an optimal beamformer, at the cost of sweeping
between only two beams.

The rest of this paper is organized as follows. Section II
shows the dependence among remote channels. In Section III,
the remote channel inference framework is introduced, and
beamforming for small cells in heterogeneous networks is
studied as a use case. Section IV depicts the performance
of the proposed framework on ray-tracing based channel
data. Finally, Section V presents our concluding remarks and
discusses potential avenues for future work.

1In this work, some statistical features of CSI can be inferred, e.g. angular
power spectrum (APS), while the inference of the instantaneous CSI is saved
for future work. Therefore, reference signal (RS) for beamforming can be
saved, while RS for demodulation is still required.
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II. DEPENDENCE AMONG REMOTE CHANNELS

Before diving into details about the proposed remote chan-
nel inference schemes, this section is dedicated to show
that dependence exists between geographically separated BSs;
this finding justifies the feasibility of the channel inference
performed in our proposed framework.

A. Mutual Information Calculation on Remote Channels

Most existing literature assumes the CSIs from geographi-
cally separated BSs (larger than the order of wavelength) to
be statistically independent, by showing that their linear corre-
lation is approximately zero. However, in this work, we show
that they actually exhibit significant mutual information, based
on ray-tracing CSI data.

Towards proving the existence of this dependence, we first
provide some high-level intuition. In general, the CSI can be
considered as a function of UE locations and other factors.
This function mapping changes with time due to changes
in the environment, but it can be assumed that the CSI is
quasi-static as long as the estimation time is smaller than
the channel coherence time. Moreover, the average CSI (CSI
statistics) is expected to be strongly related to UE locations,
especially when a line-of-sight (LoS) path exists. Additionally,
UE locations are strongly related to the observable CSI at
a source BS which is also available for the UE. Under
the condition that source BS antennas form a large antenna
array, existing literature shows that the channel responses
from different UE locations are asymptotically orthogonal [3].
Thus the mapping from UE location to the source BS array
response is invertible. Therefore, the CSI at target BSs can
be inferred by first estimating the UE location from source
BS channel and then using the estimated location to generate
the average CSI. However, in our approach, these two steps
are implicitly combined by learning the mapping between the
channels of source BS and target BS directly. In general,
this implicit relationship is non-linear, and thus it does not
exhibit any significant linear correlations. Of course in general
scenarios, these mappings are much more complex and hence
a data-driven approach is reasonable.

To further illustrate this point, this dependence can be shown
clearly by calculating the mutual information, which mea-
sures the degree of relevance between two variables (vectors),
between the local CSI of source BSs and the remote CSI at a
target BS. The calculation is based on a data-driven approach,
whereby channel parameters are generated according to a
ray-tracing software named Wireless InSite [25]. As shown
in Fig. 1, a source BS and target BS are placed at a distance
of 122 meters in an urban outdoor scenario, equipped with
128 and 32 antennas, respectively. Single-antenna UEs are
uniformly distributed under the coverage of the target BS.
Assuming that both the source BS and the target BS are
equipped with uniform linear antenna arrays, a steering vector
can be expressed as

[a(θ)]i = e−j 2π
λ iδ sin θ (i = 0, 1, · · · , M − 1), (1)

where λ denotes the wavelength, δ denotes the antenna spac-
ing, M denotes the number of antennas and θ denotes the

Fig. 1. Scenario for ray-tracing based simulations. Two BSs are placed at
different sites, and UEs are uniformly distributed in the outdoor square range
covered by the target BS.

angle of departure (AoD) for transmitters or the angle of
arrival (AoA) for receivers. Considering narrowband signals,
the DL CSI between BSs and UEs can be expressed as

H =
NP∑

i=1

αiaB(θdi)aT
U(θai), (2)

where αi, θdi, θai denote the complex impulse response,
AoD, AoA of the i-th propagation path between transceivers,
respectively, and NP denotes the total number of propagation
paths. Since UEs are equipped with a single antenna in the
simulations, aU equals 1 and CSI H becomes a vector h.
The CSI of the target BS is quantized to an index in the
discrete-Fourier-transform (DFT) based codebooks or random
vector quantization (RVQ) based codebooks. As for the source
BS, we use a scalar quantization scheme with reverse water
filling bit-loading proposed in [14]. Fig. 2 shows the calculated
mutual information under different degrees of quantization.
It can be seen that the mutual information between the local
CSI of the source BS and the remote CSI at the target BS
(based on either the DFT codebook or RVQ codebook) is close
to the information entropy of the latter one provided 40 bits
for local CSI quantization, which indicates that the optimal
beam pattern at the target BS is almost certain given the local
CSI of source BS. Besides, results from canonical-correlation
analysis show that the linear correlation between remote chan-
nel vectors is approximately zero, suggesting that, combined
with mutual information results, remote channel vectors are
uncorrelated but dependent.

B. CRLB Analysis Based on One-Ring Channel Model

To gain more insight into the channel inference problem and
performance, a theoretical analysis based on widely-adopted
channel models is conducted in this subsection. Consider a
communication setup (see Fig. 3) where the UE is surrounded
by local scatterers. Let hs be the CSI between the UE and
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Fig. 2. Analysis on the relationship between local CSI and remote CSI.
The remote CSI is quantized by (a) DFT based codebook and (b) RVQ based
codebook, while the local CSI is discretized according to a scalar quanti-
zation scheme proposed in [14]. The mutual information between the local
observable CSI and the remote CSI is close to the information entropy of the
latter provided 40 bits for local CSI quantization, while the average canonical
correlation coefficient between remote channel vectors is relatively small.

source BSs. Let there be a target BS, with CSI ht. The UE
has a single antenna element, while the BSs have antenna
arrays of size Ms for the source BSs and Mt for the target
BS, respectively. The goal is to infer ht from the knowledge
of hs. Such an inference problem from hs to ht might be ill-
posed, in the sense that any of the following conditions is not
satisfied:

• For any hs, there exists a unique ht that corresponds to
the channel realization.

• The mapping from hs to ht is steady, i.e., given a small
error of hs, the corresponding error of ht is also limited.

In practice, we can usually relax the first condition to
that if the mapping is not unique, then the mapping error
is, to some extent, acceptable. The inference problem is
studied by considering the physical propagation environment.
Define the propagation channel as a vector of parameters zp,
consisting of, e.g., scatterer locations, reflection attenuation

Fig. 3. A one-ring model based CSI inference scenario illustration. Two
source BSs with known CSI are described; the CSI at the target BS is unknown
and to be inferred.

factors, etc. Then both the CSIs at the source or target BS can
be expressed as a function of zp and UE location l based on
the same methodology of ray-tracing models, i.e.,

hs = f(l, zp) and ht = g(l, zp), (3)

where f(·) and g(·) denote the function mappings from the
physical environment and UE location to the CSIs at the source
BSs and target BS, respectively.

The general model described in (3) is implicit and therefore
infeasible for theoretical analysis. Towards this end, we adopt
a model-based approach which essentially transforms the CSI
inference problem to a parameter extraction problem based
on a well-defined channel model; specifically, the one-ring
ray-tracing channel model is used where the scatterers are
assumed to be placed within a ring of radius rmax (only
single-scattering is considered). The UE is at the center of
the scatterer-ring. The received signal y = [y1, . . . , yM ]T

at a BS can be written by (denote the channel vector by
h = [h1, . . . , hM ]T)

yi =
√

Ptxhi + ni,

hi =
NP∑

k=1

gki exp
(
− j2π

λ
dki

)
, (4)

where k is the index of MPC going through the k-th scatterer,
gki � λ

4πdki
denotes the channel gain due to pathloss based

on Friis’ law, the Gaussian additive noise is denoted by
ni with variance of σ2 (the sounding signal is omitted for
simplification and assumed with effective transmit power of
Ptx), and the path distance of the k-th MPC received at the
i-th antenna is denoted by dki which equals

dki = ξtk + ξki (5)

with ξtk denoting the distance from the UE to the k-th scatterer
and ξki denoting the distance from the k-th scatterer to the i-
th receive antenna. Assuming that the angle spread at the UE
is relatively small and the UE is in the far-field, i.e., D �
rmax and D � 2 M2

s δ2

λ where δ is antenna spacing [26],
the channel gains of all MPCs are therefore approximately
identical, i.e., gki = g, ∀1 ≤ k ≤ NP, 1 ≤ i ≤ M , and

dki ≈ ξk + iδ cos γk. (6)

Denote by ξk the distance from the UE to the antenna array (a
reference point such that the above equation is upheld) passing
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through the k-th scatterer, and γk is the AoA of the k-th MPC.
Based on this approximation, (4) can be re-written as

yi =
NP∑

k=1

g
√

Ptx exp
(
− j2πδi

λ
cos γk + jφk

)
+ ni, (7)

where φk = − j2π
λ ξk, and g = λ

4πD represents the pathloss.
The APS seen at a site is defined as

S(γ) = gμ(γ)p(γ), (8)

where γ is the AoA to the site and S(γ) is normalized such
that

∫ γmax

−γmax

S2(γ)dγ = g2. (9)

The scatterer angular distribution is characterized by μ(γ), and
the probability that the MPC with AoA γ is observable (not
blocked) at the site is p(γ). For example, if we assume that
the scatterers are continuously placed on the ring with radius
rmax, then [27]

μring(γ) =
2√

γ2
max − (γ − θ)2

, (10)

where θ−γmax ≤ γ ≤ θ+γmax and θ is the mean AoA of the
UE and γmax denotes the maximum angular spread. A typical
form of p(γ) is e.g., uniform on the disk with a radius of rmax.
The channel array response is written as

yi =
∫ γmax

−γmax

√
PtxS(γ)

× exp
(
− j2πδi

λ
cos (γ + θ) + jφγ

)
dγ + ni. (11)

Combing with (3), we denote

hs,i = f (θs, Ss(γ), φs,γ , rmax,s) ,

ht,i = g (θt, St(γ), φt,γ , rmax,t) , (12)

where the subscripts (·)s and (·)t denote the source BS and
the target BS, respectively. The function mapping of f(·) and
g(·) are substantiated by (11). Note that the model of (12)
allows, e.g., different angular spreads, different visibility of
scatterers, different APSs at the source BS and the target BS,
by distinct rmax, pγ , μ(γ), respectively. It is thus significantly
more general than a model valid within a stationarity region,
which assumes that only the phases of MPCs vary (due to
phase shifts related to the different run lengths).

Based on the above model, the channel inference task can
be stated concretely below:

P1: Estimate ht, given hs, s.t., Eq. (12) is satisfied. (13)

It is observed that the implicit channel inference problem in
(3) is transformed into a parameter extraction and estimation
problem in P1, based on the adopted channel models; this
allows us to derive the CSI inference CRLB, which indi-
cates the CSI inference accuracy. Equivalently, the inverse of
the CRLB, representing the Fisher information, indicates the
amount of information that the local CSI carries about the
remote CSI.

To further simplify the model and focus on the main
goal of CSI inference, two reasonable assumptions are made,
which describe the capability boundary of CSI inference,
i.e., parameters that can be inferred and those that cannot.
Specifically,

• The phase of an arrival MPC, i.e., φγ , is random (i.i.d.
among MPCs) and cannot be inferred. This is a practical
and realistic consideration given that the phase of an
electromagnetic wave shifts dramatically even with a
slight movement of the UE (several wavelengths).

• The observable scatterers seen at the target BS, i.e., St(γ),
rmax,t, cannot be inferred based on the observation at
the source BS, which provides little information about
whether an MPC is obstructed seen at the target BS.
Instead, this information can be obtained by using rel-
atively infrequent probing signals by the target BS given
that the scattering environment is constant inside the
stationarity region (typical size of tens of meters in urban
areas).2

Given these assumptions, we focus on analyzing the infer-
ence performance with respect to the AoA at the target BS
θt to obtain theoretical results. The end goal is to derive the
CRLB of the estimation of θt, towards which we first solve the
inverse problem of hs,i = f (θs, Ss(γ), φs,γ , rmax,s), and then
relates to the AoA of θt based on geometry.

Theorem 1: Define z = {S(γ), γmax, θs}, then the Fisher
information matrix (FIM) of z can be approximated by:

{Jz}ij = Ktr
[
C−1

ys
DjC

−1
ys

Di

]
, (14)

where K is the number of sampling points, Cys = E[ysy
H
s ]

and Di = ∂Cys

∂zi
.

Proof: The proof is given in Appendix A. �
Based on (14), the CRLB of AoA (θs) and UE distance

Ds can be obtained by extracting the diagonal entries of
the inverse FIM. The CRLB of θt can be therefore obtained
in the following. Without loss of generality, assume the
coordinates of the source BS and target BS are (0, 0) and
(D0 cos θ0, D0 sin θ0) in a two-dimensional Cartesian coordi-
nate system, respectively. Based on θs and Ds, the coordinate
of the UE can be expressed in two ways as follows:

lx = Ds cos θs = D0 cos θ0 + Dt cos θt, (15)

ly = Ds sin θs = D0 sin θ0 + Dt sin θt. (16)

The AoA at the target BS can be hence represented by Ds and
Dt as follows

θt = arctan
(

Ds sin θs − D0 sin θ0

Ds cos θs − D0 cos θ0

)
. (17)

2The requirement for pilot signals to probe the MPC distributions is mainly
assumed for theoretical analysis; based on the deep learning implementation,
these pilots are usually unnecessary to obtain good CSI inference performance.
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The CRLB of θt can be expressed as:

CRB(θt) =
(

∂θt

∂Ds

)2

CRB(Ds) +
(

∂θt

∂θs

)2

CRB(θs)

=
D2

0 sin2 (θ0 − θs)
D4

t

CRB(Ds)

+
D2

s (Ds − D0 cos (θ0 − θs))
2

D4
t

CRB(θs), (18)

where CRB(Ds) and CRB(θs) are obtained from (14).
The calculation of Di in (14) depends on the channel model,

e.g., scattering distribution inside the ring. It seems elusive to
calculate closed-form expressions for general models. To gain
some insights, we consider several special cases in the follow-
ing, where the angular spreads γmax,s and γmax,t are small and
approach zero, i.e., a LoS MPC only.

Corollary 1: In the scenario of one source BS and one LoS
MPC only, the CRLB of θt satisfies

CRB1(θt) ∼ 1
Ms

. (19)

Proof: The proof is given in Appendix B. �
Therefore the inference error is reciprocal with Ms in this

scenario, while the following CRLB analysis, which accounts
for two separate local sites (with known CSI) to infer the
CSI at a remote site, shows that by using the observations at
two geographically separated sites, the inference error can be
significantly reduced.

Corollary 2: In the scenario of two source BSs and one LoS
MPC each, the CRLB of θt satisfies

CRB2(θt) ∼ 1
M3

s

. (20)

Proof: The proof is given in Appendix C. �
Remark 1: The CRLB analysis shows that the accurate

estimation of the AoA at the target BS can be obtained
provided enough channel observations at the source BS, e.g.
deploying large antenna arrays. As for the non-line-of-sight
(NLoS) scenario, obtaining closed-form expressions for the
CRLB is a challenging task, and the preceding asymptotic laws
may not hold in that case.

Remark 2: While this paper focuses on inference based
solely on spatial domain signals, one direction that is worth
studying is the CSI inference performance incorporating wide-
band signals such that the time-of-arrival (ToA) can also be
estimated.

III. REMOTE CHANNEL INFERENCE FRAMEWORK

Inspired by the dependence among remote channels, we pro-
posed a remote channel inference framework [28] in order
to reduce the pilot overhead. Fig. 4 shows a typical urban
communication scenario, where massive connectivity and high
mobility of users must be supported, which brings significant
challenges for traditional pilot-aided CSI acquisition methods.
In order to provide high data rate and low latency for mobile
users, small BSs are densely deployed, each with multiple
antennas. Assume that the BSs adopt a closed-loop CSI
acquisition scheme, i.e., first broadcasting pilot resources for

Fig. 4. A typical urban communication scenario, wherein the CSI estimation
at source BSs can help infer the CSI of target BSs.

DL CSI estimation and then receiving UL CSI feedback.
However, limited pilot resources cannot satisfy the large
pilot demand of those densely-deployed cells, and there-
fore the large pilot overhead is a major obstacle to further
improve the system quality of service. To address this issue,
a remote channel inference framework is proposed, where
only source BSs are assigned with pilot resources. The CSI
of target BSs is inferred, based on CSI estimations at source
BSs.

In the proposed framework, source BSs are responsible
for UE attachment. Consequently, a UE connects to a source
BS and feeds the estimated DL CSI back to the source BS.
After that, the source BS can decide whether to serve the
UE itself or assign a target BS to serve the UE. If the latter
happens, the source BS will infer the CSI of the target
BS by the proposed approaches (specified later), and trans-
mit the inferred CSI to the target BS via backhaul links.
Based on the inferred CSI, the target BS can beamform to
the UE.

We study beamforming for small cells in heterogeneous
networks as a use case. The first subsection proposes to
infer the beamforming directions of the small cells (target
BSs) based on the CSI of the macro BS (source BS). Then
the second subsection extends the results to a multi-user
scenario, wherein the APS of the target BS is inferred to
implement user grouping in order to mitigate the multi-user
interference. In practice, the specific NN architecture to be
applied depends on the application scenarios, e.g., whether
multi-user spatial multiplexing is considered.

A. Beamforming for Small Cells in Two-Tier Heterogeneous
Networks

Network densification and software-defined virtualization
are key technologies for future wireless systems [4]. The basic
idea behind the UDN concept is to reduce the transmission
distance between users and BSs, which leads to less pathloss,
more spectrum reuse and hence higher data rate. Meanwhile,
the hyper-cellular network (HCN) is proposed in [29], based
on which the control- and data-coverage are separated to
provide uniform high quality of service with elastic data-
coverage. In HCN, the control-BS (CBS) is responsible for
control coverage and several traffic-BSs (TBSs) take care
of data coverage. This architecture allows agile sleeping of
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TBSs, and thus the energy consumption of the network can
be drastically reduced, while the CBS can handle the control
signaling to provide seamless coverage.

A major technical challenge for ultra-dense HCN is
the strong interference among densely deployed TBSs [30].
Coordinated beamforming is an effective way to mitigate
interference [31]. However, timely and accurate CSI acqui-
sition may present a big challenge. Generally, the system
exploits pilot signals to acquire the CSI. However, limited
pilot resources cannot satisfy the demand of a huge num-
ber of densely deployed TBSs (assuming FDD systems are
considered, where channel reciprocity cannot be exploited).
Furthermore, searching over all possible beam directions of
TBSs leads to increased UE energy consumption and delay
overhead.

1) Approach: The optimal maximum-ratio-transmission
(MRT) beamforming structure, or eigen-based beamform-
ing scheme where only channel statistics are available [32],
requires accurate channel estimations to derive the beamform-
ing vector (pattern). In the proposed framework, we use remote
channel inference to find the optimal beamforming vector
for TBSs. To simplify the approach, a finite and prescribed
codebook is involved, and the task is to select the beamforming
vector (codeword) from the codebook. Thereby, the problem is
to find the optimal beam pattern for TBSs from the prescribed
codebook according to the observable CSI of the CBS. Here
we define the beamforming pattern that has the maximum
signal-to-noise ratio (SNR) to the desired user as the optimal
one (note that a single-user scenario is considered in this use
case).

We propose a remote beamforming inference framework
to address this problem. In this scheme, in order to reduce
pilot overhead, only the CBS sends DL reference signals.
Consequently, the UE connects to the CBS and sends estimated
DL CSI feedback to the CBS. After that, the central controller
at the CBS will decide which TBS should serve the UE. Then
the selected TBS will exploit beamforming to transmit DL
data. We resort to a data-driven channel learning approach
and exploit the CSI between the CBS and UEs to infer the
CSI between TBSs and UEs. Specifically, the CBS infers
the CSI for the TBS and thereby sends its suggestion for
the optimal beamforming vector to the TBS via the backhaul
link. Then the TBS creates an initial connection to the UE
using the selected beam pattern. If the connection fails in
the last stage, the TBS can ask for an updated beam pattern
from the CBS or use a high-overhead default beamforming
mechanism to finally establish the link. The above situation
occurs when CSI changes during the prediction time or the
predicted beamforming pattern deviates too much from the
optimal one.

NN architectures are known to achieve tremendous success
in approximating non-linear functions [24], which are suitable
for CSI inference. The training of the NN is done as follows.
For a given cellular network, channel estimations for both
the CBS and TBSs can be collected at sampling points, e.g.,
by conducting an offline CSI data collection or crowdsourcing
to certain users at random locations; the data are then utilized
for training of the NN.

An NN with four hidden layers is adopted, and the input
of the NN is the pre-processed observable CSI at the CBS.
Preprocessing is needed to extract features from raw CSI so
as to speed up the training process. Specifically, we transform
channel vectors into the angular domain by fast Fourier
transform (FFT), then extract the amplitude information, take
the logarithm, and normalize for each angular bin. The first
step is to obtain a better description on the physical environ-
ment by transforming the input CSI the into angular domain.
The following steps are to generate Gaussian-like inputs to
the NN and scale the range of the inputs, which can help
improve the training speed. The number of input features is
the same as the number of CBS antennas. The outputs are the
selection probabilities of all beam patterns at a TBS from a
DFT-based beamforming codebook. The size of the codebook
can be larger than the number of TBS antennas in order to
obtain a higher angular resolution. Specifically, assuming Nb

codewords, with Nb larger than the number of TBS antennas
NT, the codewords are the first NT columns of an Nb × Nb

DFT matrix. Since the CSI of the TBS is known for each
training sample, it is straightforward to find the optimal beam
pattern from the codebook based on the training data. The cost
function is the cross-entropy [33] function, expressed as

L = − 1
Ns

Ns∑

i=1

Nb∑

j=1

uij log(vij). (21)

Here Ns is the number of samples, and uij and vij represent
the ground truth and the predicted value of the selection
probability for the j-th beamforming vector at the i-th sample,
respectively. We use a back-propagation algorithm to calcu-
late gradients and obtain the weight update based on those
gradients, which is implemented based on the Tensorflow
architecture [34]. The activation function for the hidden layers
is Relu, while the activation function for the output layer
is softmax. Dropout [35] is utilized to prevent the network
from overfitting. We also adopt the batch normalization [36]
technique to accelerate the training process.

After the NN has been trained, predictions can be made
to select optimal beam patterns. We feed extracted features
into the NN and the output vector represents the selection
probabilities of all the beam patterns. The beamforming vector
with the largest probability is the output. The NN is trained
offline, while the low-complexity beamforming inference is
made online, and thus the proposed scheme only introduces
small delay overhead in comparison with other schemes such
as beam sweeping; the impact of delay on performance is
studied and resolved in our related work [37]. When major
environmental changes happen, the training data can be
re-collected by crowd-sourcing techniques or in an online
manner with pilot-aided channel estimation.

The aforementioned beamforming inference method is pro-
posed for beamforming at the transmitter side; this method
can also be applied similarly for receive beamforming at
the UE side. In this case, the output of the NN denotes the
selection probability of each receiver beam direction and the
input of the NN should be a pre-processed channel matrix.
Two-dimensional DFT (the Kronecker product of two simple
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Fig. 5. The architecture of the CNN-based APS inference framework. f and s stand for the number of feature maps (output of a convolutional layer) and
the stride length for convolutional layers, respectively. The number of hidden units for fully-connected layers is denoted by n.

DFTs) is adopted to transform the channel matrix into the
angular domain and for simplicity, the pre-processed channel
matrix is reshaped into a vector and fed into the NN. Exploit-
ing similar NN architectures and training methods as transmit
beamforming, the receive beamforming vector at the UE for
the TBS can be inferred.

2) Enhancements for Prediction Accuracy: First, note that
UE locations have a big influence on the system performance.
Specifically, UEs that have shorter distances to TBSs tend to
have worse performance. The reason is that the estimation
error of AoD is inversely proportional to the distances between
UEs and TBSs given certain estimation error of UE locations.
In extreme cases where UEs are very close to TBSs and far
from the CBS, beam pattern selection can be a really difficult
decision based on our framework. For these UEs, a wider
beam may be a better choice to trade angular resolution for
the robustness of estimation.

Therefore, providing more information about UE locations
can potentially help to improve prediction accuracy. Inspired
by Section II-B, we propose to include more CBSs into the
inference framework. In long-term-evolution (LTE) standards,
UEs can measure the CSI of neighboring BSs and send CSI
reports to the serving BS. In that way, the CBS can have CSIs
of UEs to other CBSs and thus it can exploit this information
to improve beamforming inference accuracy and hence the
system performance.

A set of candidate beam patterns can be obtained through
the learning approach by selecting the S candidate beams with
the highest probabilities. Specifically, the output of the NN is
the soft information indicating the probabilities for selecting
each of the beam patterns. If however the predicted beam pat-
tern fails to work, the beam with the second highest selection
probability is most likely to work. After a set of candidate
beams is fed to the TBS, it can combine the inference with
conventional beam sweeping to further select the optimal beam
with much less overhead, since only the beams in the candidate
list need to be further evaluated. Either way, our proposed
scheme can reduce, if not eliminate completely, the training
overhead and training delay.

B. APS Inference for User Grouping in Downlink Multi-User
MIMO Systems

The aforementioned learning-based beamforming can
achieve near-optimal beamforming gain for single-user sys-
tems, but the multi-user interference cannot be eliminated

on condition that only the optimal beam direction towards
a certain user is known. One simple solution is to allocate
orthogonal resources for different users, at the cost of losing
the potential spatial multiplexing gain. To further improve the
performance of the proposed channel inference framework,
extensions are made to infer the APS of the TBS, which
characterizes the channel power distribution in the angular
domain, so as to suppress the multi-user interference. Based
on the inferred APS, users with small overlap in terms of
APS can be grouped to transmit together in the same resource
blocks (RBs), since they are spatially separable. Different user
groups can be assigned with orthogonal resources to suppress
interference. In general, the proposed method can reduce the
multi-user interference and achieve spatial multiplexing gain
with very little pilot overhead.

For simplicity, we assume that user devices are equipped
with a single antenna, and hence the APS is a one-dimensional
vector. Even then, the inference of APS is still much more
challenging compared with inferring the strongest beam direc-
tions. The good news is that the APS of the MIMO channel
shows block-sparsity, i.e., APS is typically sparse in the
angular domain, which inspires the usage of CNN. Specif-
ically, as shown in Fig. 5, a DNN with 6 convolutional
layers and 2 fully-connected layers is trained, where the input
and output of the DNN are the APS of CBS and TBS,
respectively. The size of the one-dimension convolutional
kernel is 5 × 1. The activation function of each layer is leaky
Relu [38], and dropout is utilized to prevent the model from
overfitting. The optimization target is to minimize the mean
square error (MSE) of the APS of the target BS, while the
Adam optimizer is applied for updating the gradients of the
parameters. Additionally, batch-normalization is adopted for
accelerating the training speed of the DNN.

To deal with multi-user interference, the conventional
zero-forcing or minimum MSE precoder relies on accu-
rate instantaneous CSI, which entails enormous CSI acqui-
sition overhead. The proposed APS inference can reduce
the multi-user interference by user-grouping only based on
the inferred APS. The basic idea is to group users with
small overlap in terms of APS. Users in the same group
can be served simultaneously, for the reason that their spatial
directions are non-overlapped.

Inspired by our previous work [39], a graph-coloring-based
user grouping algorithm is applied to divide the users into
spatial compatible sets. The first step is to detect the dominant
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directions for all users. Given an APS, the dominant directions
are defined as the components with significant values, i.e.,

Sk = {i|Sk(i) ≥ ε}, (22)

where Sk(i) denotes the i-th components in the APS of the
k-th user and Sk denotes the set of the dominant directions
of the k-th user. ε is an adaptive threshold, which satisfies the
constraint

∫
A Sk(i)di − ∫

Sk
Sk(i)di

∫
A Sk(i)di

= η. (23)

Here A denotes the set of all directions, and η is a pre-
defined threshold and can be used to control the size of
different groups. A larger η leads to a larger set of domi-
nant directions, and hence a smaller group size. Users with
no overlap in terms of the dominant directions experience
small interference towards each other, so a graph-coloring
algorithm is adopted on the detected dominant directions.
Specifically, an undirected conflict graph is built wherein
users can be regarded as vertices. An edge connects two
vertices if and only if the dominant directions of the two
corresponding users overlap. Consequently, the user-grouping
problem can be transformed into a graph-coloring problem,
and the non-overlap constraint is equivalent to the requirement
that the connected vertices should be assigned with different
colours. Graph-coloring is a well-studied problem and for
simplicity, a greedy algorithm [40] is applied here. As shown
in Alg. 1, the coloring set is first initialized by a vector with all
zero elements, and the color set is ∅. After sorting the users
based on the smallest index of the dominant directions of APS,
the sorted users are colored in a greedy manner, avoiding the
same color for neighboring vertices. The complexity of the
algorithm is O(N2

u ), where Nu denotes the number of users.

Algorithm 1: Greedy Coloring User Grouping (GCUP)
Input: Dominant directions of the APS Sk,

k = 1, 2, · · · , Nu

Output: Grouping results c
Initialize: set c = [0, 0, . . . , 0], the corresponding color
set C = ∅;
Generate the conflict graph G based on Sk,
k = 1, 2, · · · , Nu;
Sorting: sort all users in an ascending order according to
the smallest index of the dominant directions of APS;
Coloring:
for k = 1, 2, · · · , Nu do

Color the k-th vertex with a color different to the
neighboring vertices from C;
if no color is available then

Assign a new color for the vertex and add the
color to C;

end
ck = m, m denotes the color of the k-th vertex;

end

Users in the same group occupy the same RBs, while
different user groups occupy orthogonal resources. Consider

that the total transmission power is P0, and there are totally Nu

users divided into Ng groups. In each group, an equal power
allocation scheme is adopted. Consequently, the transmit sig-
nal for the m-th group can be expressed as:

sm =
km∑

i=1

√
P0

km
ωimxim, (24)

where km denotes the number of users in the m-th group
and satisfies

∑Ng

m=1 km = Nu. ωim and xim denote the
beamforming vector and transmitted symbols of the i-th user
in the m-th group. ωim is from a predefined DFT-based
codebook standing for the optimal beam direction based on
the inferred APS. The transmitted symbols of different users
are assumed to be uncorrelated. In other words, xi satisfies
E(x̄ixi) = 1 and E(x̄ixj) = 0, for any i �= j.

The received signal for the i-th user can be expressed
as:

yim = hH
imsm + n =

km∑

i=1

√
P0

km
hH

imωimxim + n, (25)

where him denotes the DL CSI of the i-th user in the m-th
group.

The signal to interference plus noise ratio (SINR) of the
i-th user can be expressed as:

SINRim =
P0
km

|hH
imωim|2

P0
km

∑km

j=1,j �=i |hH
imωjm|2 + N0

, (26)

where N0 denotes the noise power.
Provided that the resources occupied by different user

groups are proportional to the group size, the constrained sum
rate can be expressed as:

R=
1

Nu

Ng∑

m=1

km

km∑

i=1

log2(1+SINRim)1(SINRim ≥ ζ), (27)

where ζ denotes the minimal SINR for effective transmission;
note that an SNR below ζ does not allow any meaningful data
rate in practice, since a limited modulation-coding selection is
considered.

IV. SIMULATION RESULTS

In this section, ray-tracing based simulations are conducted
to evaluate the performance of the proposed framework.
Specifically, we generate CSI data from Wireless InSite in
a typical urban outdoor scenario. The carrier frequency is
2.6 GHz unless otherwise stated. A CBS with uniform linear
array and half wavelength antenna spacing is deployed at a
height of 35 m. Without loss of generality, a TBS with uniform
linear array and half wavelength antenna spacing is deployed
at a height of 5 m within the coverage of the CBS. The
number of antennas for the CBS and TBS are, unless stated
specifically, 128 and 32, respectively. The UEs are uniformly
distributed in a rectangular area under the coverage of the TBS,
equipped with a 1×8 antenna array. If not specified, the sizes
of DFT-based beamforming codebook for the TBS and the UE
are 256 and 8, respectively. There are totally around 5 × 104
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samples, and 20% of them are test sets; the rest are used for
training.3

A. Simulation Results for Remote Beamforming Inference

In the single user case, the performance metric shown in
the figures is the normalized beamforming loss, which can be
expressed as

Lb = 1 − ‖wT
r,inferHwt,infer‖

‖wT
r,optHwt,opt‖ , (28)

where wr,infer and wt,infer denote the inferred receive and
transmit beamforming patterns, respectively, while wr,opt and
wt,opt denote the optimal receive and transmit beamforming
patterns from the codebook. We take this as our performance
metric, along with prediction accuracy, because there is a
chance that UEs have almost the same received signal strength
using two different beamforming vectors, i.e., when these two
beamforming vectors are very close such that the impact of
choosing either one does not affect the performance. The
optimal beamforming pattern in this case can be, therefore,
either one.

Fig. 6 shows the cumulative distribution function (CDF)
of the normalized beamforming loss of different algorithms.
The red dashed line reflects the results of inferring the receive
beamforming while the transmit precoding is optimal by
exhaustive sweeping. The gap between the red dashed line
and the line y = 1 represents the performance loss of receive
beamforming inference. Similarly, the gap between the black
solid line and the line y = 1 represents the performance loss
of inferring the beam directions at both the transmitter and
the receiver side. The average normalized beamforming loss
in that case is 10.05%, which is acceptable given massive
beam pattern choices. When the channel estimation error of
the CBS is considered and a 5% Gaussian noise is added to
the input CSI vectors, an average normalized beamforming
loss of 16.64% can be achieved by the proposed method.
Compared with location based beamforming, where the beam
directions are calculated based on the locations of transceivers
and assuming LoS propagation channels, the proposed method
shows evident improvement and avoids the extra overhead
of gathering positioning information [41]. The average beam-
forming loss of location based beamforming is 21.12% even
without any positioning error, while the loss increases to
28.74% when the root mean square error (RMSE) of position-
ing error is 1 m. It can also be observed that the location-based
beamforming with exact location information has a larger
probability to obtain the optimal beam directions compared
with our proposed method, but more than 20% of the users
suffer from very poor beamforming performance. Simulation
results in different frequency bands are exhibited in Fig. 6(b).
Although the remote beamforming inference scheme exhibits
a sight performance decline in the mm-wave band compared
with the sub 6 GHz band, it still shows notable superiority over
location-based beamforming. Besides, the proposed scheme
can easily provide comparative beamforming gain in a typical

3The corresponding channel data and code files can be found on
https://gitlab.com/xgwx/Channel-Infer.

Fig. 6. CDF of normalized beamforming loss. Tx and Rx denote transmit
precoding and receive beamforming, respectively, while infer and opt stand
for inferring from remote BS and the optimal one from the codebook.

scenario that CBS and TBS work in different bands, owing to
its learning-based model-free feature.

Fig. 7 shows the relationship between the average SE
and the beamforming codebook size. The average SE is
calculated by the Shannon formula, which can be expressed
as:

E(Se) =
1
N

N∑

i=1

log2

(
1 +

P‖wT
riHiwti‖2

N0

)
, (29)

where N , P and N0 denote the number of test samples,
transmitting power and noise power, respectively. It is straight-
forward to see that the optimal beamforming performance
increases with the beam codebook size in Fig. 7(a). However,
when it comes to the proposed channel inference method,
the average SE first increases with the beam codebook size and
then drops. The explanation is that when the beam codebook
size increases, the accuracy of inferring the optimal beam
directions decreases; the performance improvement that arises
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Fig. 7. Average SE versus beam codebook size with different number of
(a) CBS antennas. (b) TBS antennas.

from increasing the beam direction resolution cannot counter-
act the loss from increasing the labels of the learning task when
the beam codebook size is relatively large, and hence the aver-
age SE drops after a certain point. Accordingly, there exists
a trade-off between the codebook quantization loss and the
learning performance. Under the current setting of 32 antennas
at the TBS, the preferable transmission codebook size is 256.
When the number of the CBS antennas grows from 64 to
128, the average SE increases, for the reason that a larger
number of CBS antennas can provide more observations on
the physical propagation environment. However, the average
SE shows little improvement when the number of the CBS
antennas increases from 128 to 256, indicating that a CBS with
128 antennas provides enough information for beam inference
at the TBS under current settings. Fig. 7(b) shows the average
SE with different number of TBS antennas. It is observed that
the performances of both the optimal beamforming and the
proposed method increase with the number of TBS antennas,
and the aforementioned trade-off still exists when the number
of TBS antennas changes. In addition, the performance gap

Fig. 8. (a) CDF of normalized beamforming loss with multiple CBSs.
(b) CDF of normalized beamforming loss with multiple candidate beams.

between the optimal beamforming and the proposed scheme
grows with the number of TBS antennas, resulting from the
fact that narrower beams lead to a larger loss of beamforming
gain when not aligned perfectly.

Fig. 8 shows the performance of the remote beamform-
ing inference framework with the proposed enhancements.
It can be observed that by jointly learning from two CBSs,
the performance of the proposed scheme can be improved
from a loss of 10.05% to 7.21%, resulting from a better
characterization of the physical environments providing the
view of two CBSs. Fig. 8(b) shows that combining our
proposed framework with conventional beam sweeping can
significantly improve the system performance. For instance,
by sweeping only two candidate beams, an accuracy of 98.67%
for the receive beamforming can be achieved. Sweeping two
candidate beams at both the receiver and the transmitter sides
can reduce the normalized beamforming loss from 10.05% to
4.60%. Accordingly, the performance of the proposed scheme
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Fig. 9. (a) Sum rate versus SNR with 60 users. (b) Sum rate versus number
of users with an SNR of 15 dB.

can be easily improved at a cost of very small extra overhead
(2 candidate beams are sufficient); the overhead is much
smaller compared with conventional beam sweeping methods.

B. Simulation Results for APS inference and User Grouping

In the multi-user scenario, users are grouped based on the
APS, which is inferred by an offline-fitted CNN. Here the
APS of each user is an 1024-dimension vector in order to
provide high angular resolution. Fig. 9 shows the performance
of the proposed user grouping schemes, together with the
proposed APS inference schemes. Two baseline algorithms
are considered here. One serves all users simultaneously,
while the other allocates orthogonal resources for different
users. A DFT-based analog beamformer is used for all the
schemes, based on either the real APS or the inferred APS.
Since the TBS only has 32 antennas, the beamforming vectors
are the first 32 dimensions of the DFT vectors with a size
of 1024. The minimal threshold η for SINR is set at 0.2.
As shown in Fig. 9(a), the proposed user grouping method out-
performs the method that serves all the users simultaneously.
Besides, the proposed algorithm has a significant performance

improvement over allocating orthogonal resources for different
users in a high SNR regime, benefiting from the spatial
multiplexing gain. For instance, the constraint sum rate of the
proposed approach is 1.8 times larger than that from serving
all 60 users separately at an SNR of 20 dB. Fig. 9(b) shows
the constrained sum rate versus the number of users, when
the SNR is set at 15 dB. It can be seen that the proposed
scheme can guarantee a stable performance when serving a
large number of users. In general, the proposed graph coloring
based user grouping can achieve an effective trade-off between
the beamforming gain and the spatial multiplexing gain.

V. CONCLUSIONS

In this paper, the dependence among remote channels was
shown by the calculation of the mutual information and CRLB.
Based on this finding, the idea of remote channel inference
framework was proposed, and beamforming for small cells in
hyper-cellular networks was studied as a use case. Different
NN architectures were exploited to infer the beamforming
directions or the APS of target BSs based on the CSI of source
BSs. The simulation results on ray-tracing channel data show
significant performance gain over conventional schemes.

An interesting question to ask is whether instantaneous CSI
can be inferred, since the current approach can only infer
CSI features such as AoAs and receive power. Closed-form
expressions for the remote CSI dependence in the general
case would definitely be desirable, although obtaining such
expressions seems a daunting task given the complicated wire-
less propagation environment. In addition, the generalization
to wideband CSI could be a promising path, because wideband
signals give us great resolution in the delay domain, and thus
contain much more information that can be taken advantage of.

APPENDIX A

Based on the first assumption in Section II-B, the phase is
random and hence the received signal in (11) can be viewed
as a zero-mean circular complex Gaussian process (assuming
a large number of scatterers), whose probability distribution
function (pdf) is completely characterized by its covariance
matrix (sufficient statistics)

Cy = E[yyH] = PtxE

[
hhH

]
+ Cn, (30)

where Cn is the noise covariance, and its estimation as

Ĉy =
1
K

K∑

k=1

y(k)yH(k), (31)

where K is the number of sampling points, y(k) denotes the
k-th sample, and furthermore
{

E

[
hhH

]}

ml

= E
[
hmhH

l

]

=
∫ γmax

−γmax

S(γ) exp
(
− j2πδm

λ
cos (γ + θ) + jφγ

)
dγ

×
∫ γmax

−γmax

S(γ) exp
(

j2πδl

λ
cos (γ + θ) − jφγ

)
dγ
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(a)
=

∫ γmax

−γmax

S2(γ) exp
(
− j2πδ(m − l)

λ
cos (γ + θ)

)
dγ

(b)
= exp

(
− j2πδ(m − l)

λ
cos θ

)

×
∫ γmax

−γmax

S2(γ) exp
(

j2πδ(m − l)
λ

sin θγ

)
dγ

(c)
= exp

(
− j2πδ(m − l)

λ
cos θ

)

×F−1

⎧
⎨

⎩S2(γ)rect
(

γ

2γmax

) ∣∣∣∣∣
f=γ

⎫
⎬

⎭

∣∣∣∣∣
t= (m−l)δ sin θ

λ

.

(32)

The equality of (a) is based on the fact that the arrival phases
of MPCs are assumed i.i.d. and hence the cross terms in the
integral are averaged out. The equality of (b) is based on
the approximation that rmax is small, thereby sin γ ≈ γ and
cos γ ≈ 1. The equality of (c) is obtained by employing the
inverse Fourier transform and rect(·) denotes the rectangular
function. The channel covariance matrix can be obtained with
each entry given in (32). Thereby, we are ready to derive
the CRLB of channel inference. Given the observations at
the source BS Cys in (30), the log-likelihood function can
be written as

L(z) = −K log |Cys | − Ktr
[
C−1

ys
Ĉys

]
+ const. (33)

where z = {S(γ), γmax, θs}. Its derivative can be calculated
as

dL(z) = −Ktr
[
C−1

ys
− C−1

ys
ĈysC

−1
ys

]
dCys . (34)

The FIM is given by

{Jz}ij = −E

[
∂2L(z)
∂zi∂zj

]

= KE

⎡

⎣
∂
(
tr
[
IMs − C−1

ys
Ĉys

]
C−1

ys
Di

)

∂zj

⎤

⎦

= Ktr
[
C−1

ys
E

[
Ĉys

]
C−1

ys
DjC

−1
ys

Di

]

+ Ktr
[
IMs − C−1

ys
E

[
Ĉys

]] ∂
(
C−1

ys
Di

)

∂zj

(a)
= Ktr

[
C−1

ys
DjC

−1
ys

Di

]
, (35)

where we use E

[
Ĉys

]
= Cys in equality (a), and Di = ∂Cys

∂zi
.

APPENDIX B

Considering the LoS case, γmax = 0, S(γ) = Δ(γ)
(Δ(x) = 0, ∀x �= 0, and

∫∞
−∞ Δ(x) = 1), and hence

ys,LOS = ρs exp (jφ)e + n, (36)

where ρs =
√

PtxMs
λ

4πDs
, {e}i = e

−j2πiδ
λ

cos θs√
Ms

. Due to the
fact that there is only one LoS MPC, the Gaussianity of
the array response is lost; specifically the first term on the
right-hand side of the equation is deterministic and therefore
we have

ys,LOS ∼ CN (ρs exp (jφ)e, σ2IMs). (37)

A small modification to (14) is required to account for
non-zero mean, which reads (z = [ρs, τs, φ])

{Jz}ij = Ktr
[
C−1

ys
DjC

−1
ys

Di

]

+
2K

σ2

(
∂u

∂zj

∂u

∂zi
+

∂v

∂zi

∂v

∂zj

)
, (38)

where in this case m = ρs exp (jφ)e � u+jv, Cys = σ2IMs

and therefore Di = 0, ∀i. Denote τs � − 2πδ cos θs

λ , then

{Jz}11 =
2K

σ2
eHe =

2K

σ2
,

{Jz}12 = {Jz}21 = {Jz}13 = {Jz}31 = 0,

{Jz}22 =
2Kρ2

s

σ2

(
∂e

∂τs

)H
∂e

∂τs
=

Kρ2
s (Ms − 1)(2Ms − 1)

3σ2
,

{Jz}23 = {Jz}32 =
Ms − 1

σ2
Kρ2

s ,

{Jz}33 =
2 Kρ2

s

σ2
. (39)

The CRLBs can be readily derived as

CRB(ρs) =
{
J−1

z

}
11

=
σ2

2K
,

CRB(τs) =
{
J−1

z

}
22

=
6σ2

Kρ2
s (M2

s − 1)Ms
, (40)

respectively. Similar with (18), we can then obtain the CRLBs
of Ds and θs as:

CRB(Ds) =
8π2 D4

s σ
2

λ2 KPtxMs
,

CRB(θs) =
24σ2D2

s

KMs(M2
s − 1)Ptxδ2sin2θs

. (41)

Denote the effective receive signal-to-noise ratio (SNR) as

SNR =
Ptx( λ

4πDs
)2

σ2 , and δ = λ/2, then

CRB1(θt) =
D2

s

D4
t

1
KSNR

(
c1 D2

0 sin2 (θ0 − θs)
Ms︸ ︷︷ ︸
M1

+
c2 (Ds − D0 cos (θ0 − θs))

2

Ms(M2
s − 1) sin2 θs

)

︸ ︷︷ ︸
M2

, (42)

where c1 = 1
2 , c2 = 6

π2 . It is noted that

M1 ∼ 1
Ms

, and M2 ∼ 1
M3

s

, (43)

and hence

CRB1(θt) ∼ 1
Ms

. (44)

APPENDIX C

Inheriting the denotations in Appendix B, denote the loca-
tion of the other source BS as, without loss of generality,
(D′

s, 0) with D′
s > 0, and denote the AoA at the other source
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BS as θ′s. The AoA at the target BS, i.e., θt, can be expressed
by

θt = arctan
(

D′
s sin θ′s sin θs − D0 sin θ0 sin (θ′s − θs)

D′
s sin θ′s cos θs − D0 cos θ0 sin (θ′s − θs)

)
.

(45)

The CRLB of θt with known CSI at two source BSs is

CRB2(θt) =
6 D2

s

π2D4
t Ms(M2

s − 1)
1

KSNR

× ω1 + ω2

sin2 (θs − θ′s) sin2 θs

, (46)

where

ω1 = D2
0 sin2 θs sin2(θ0 − θs)

ω2 = sin2 θ′s (D′
s sin θ′s − D0 sin(θ′s − θ0))

2
. (47)

It follows that

CRB2(θt) ∼ 1
M3

s

. (48)
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