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Abstract—Coded distributed computing framework enables
large-scale machine learning (ML) models to be trained efficiently
in a distributed manner, while mitigating the straggler effect.
In this work, we consider a multi-task assignment problem in
a coded distributed computing system, where multiple masters,
each with a different matrix multiplication task, assign computa-
tion tasks to workers with heterogeneous computing capabilities.
Both dedicated and probabilistic worker assignment models are
considered, with the objective of minimizing the average comple-
tion time of all tasks. For dedicated worker assignment, greedy
algorithms are proposed and the corresponding optimal load
allocation is derived based on the Lagrange multiplier method.
For probabilistic assignment, successive convex approximation
method is used to solve the non-convex optimization problem.
Simulation results show that the proposed algorithms reduce the
completion time by 80% over uncoded scheme, and 49% over an
unbalanced coded scheme.

I. INTRODUCTION

Machine learning (ML) techniques are penetrating into

many aspects of human lives, and boosting the development

of new applications from autonomous driving, virtual and

augmented reality, to Internet of things [1]. Training compli-

cated ML models requires computations with massive volumes

of data, e.g., large-scale matrix-vector multiplications, which

cannot be realized on a single centralized server. Distributed

computing frameworks such as MapReduce [2] enable a

centralized master node to allocate data and update global

model, while tens or hundreds of distributed computing nodes,

called workers, train ML models in parallel using partial data.

Since task completion time depends on the slowest worker,

a key bottleneck in distributed computing is the straggler
effect: experiments on Amazon EC2 instances show that some

workers can be 5 times slower than the typical ones [3].

Straggler effect can be mitigated by adding redundancy

to the distributed computing system via coding [2]–[8], or

by scheduling computation tasks [9]–[11]. Maximum distance

separable (MDS) codes are widely applied for matrix mul-

tiplications [2]–[7], which can reduce the task completion
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time by O(logN), where N is the number of workers [2]. A

unified coded computing framework for straggler mitigation

is proposed in [4]. Heterogeneous workers are considered in

[5], and an asymptotically optimal load allocation scheme is

proposed. Although the stragglers are slower than the typical

workers, they can still make non-negligible contributions to the

system [6], [8]. A hierarchical coded computing framework is

thus proposed in [6], where tasks are partitioned into multiple

levels so that stragglers contribute to subtasks in the lower

levels. Multi-message communication with Lagrange coded

computing is used in [8] to exploit straggler servers.

The straggler effect can be mitigated even with un-

coded computing, via redundant scheduling of tasks and

multi-message communications. A batched coupon’s collector

scheme is proposed in [9], and the expected completion time is

analyzed in [10]. The input data is partitioned into batches, and

each worker randomly processes one at a time, until the master

collects all the results. Deterministic scheduling orders of tasks

at different workers are proposed in [11], specifically cyclic

and staircase scheduling, and the relation between redundancy

and task completion time is characterized.

Existing papers mainly consider a single master. However,

in practice, workers may be shared by more than one masters

to carry out multiple large-scale computation tasks in parallel.

Therefore, in this work, we focus on a multi-task assignment

problem for a heterogeneous distributed computing system

using MDS codes. As shown in Fig. 1, we consider multiple

masters, each with a matrix-vector multiplication task, and a

number of workers with heterogeneous computing capabilities.

The goal is to design centralized worker assignment and load

allocation algorithms that minimize the completion time of all

the tasks. We consider both dedicated and probabilistic worker

assignment policies, and formulate a non-convex optimization

problem under a unified framework. For dedicated assignment,

each worker serves one master. The optimal load allocation is

derived, and the worker assignment is transformed into a max-

min allocation problem, for which NP-hardness is proved and

greedy algorithms are proposed. For probabilistic assignment,

each worker selects a master to serve based on an optimized

probability, and a successive convex approximation (SCA)

based algorithm is proposed. Simulation results show that the

proposed algorithms can drastically reduce the task completion
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Fig. 1. Illustration of a distributed computing system with multiple master
nodes and worker nodes.

time compared to uncoded and unbalanced coded schemes.

The rest of the paper is organized as follows. The sys-

tem model and problem formulation is introduced in Sec.

II. Dedicated and probabilistic worker assignments, and the

corresponding load allocation algorithms are proposed in Sec.

III and Sec. IV, respectively. Simulation results are presented

in Sec. V, and the conclusions are summarized in Sec. VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Architecture

We consider a heterogeneous distributed computing system

with M masters M = {1, 2, ...,M}, and N workers N =
{1, 2, ..., N}, with N > M . We assume that each master has

a matrix-vector multiplication task1. The task of master m
is denoted by Amxm, where Am ∈ R

Lm×sm , xm ∈ R
sm ,

Lm, sm ∈ Z
+. The masters can use the workers to complete

their computation tasks in a distributed manner.

To deal with the straggling workers, we adopt MDS coded

computation, and encode the rows of Am. Define the coded

version of Am as Ãm, which is further divided into N

sub-matrices Ãm =
[
Ã

T

m,1, Ã
T

m,2, · · · , Ã
T

m,N

]T
, where

Ãm,n ∈ R
lm,n×sm is assigned to worker n, and lm,n is a

non-negative integer representing the load allocated to worker

n. Vector xm is multicast from master m to the workers with

lm,n > 0, and worker n calculates the multiplication of lm,n

coded rows of Am (which is Ãm,n) and xm. Matrix Am is

thus
(∑N

n=1 lm,n, Lm

)
-MDS-coded, with the requirement of∑N

n=1 lm,n ≥ Lm. Upon aggregating the multiplication results

for any Lm coded rows of Am, master m can recover Amxm.

B. Task Processing Time

The processing times of the assigned computation tasks

at the workers are modeled as mutually independent random

variables. Following the literature on coded computing [2],

[4]–[6], the processing time at each worker is modeled by a

shifted exponential distribution2. The processing time, T
[lm,n]
m,n ,

1In training ML models, e.g., linear regression, matrix-vector multiplication
tasks are carried out at each iteration of the gradient descent algorithm. These
tasks are independent over iterations, thus we focus on one iteration here.

2In this work, the worker assignment and load allocation algorithms
are designed based on the assumption of shifted exponential distribution.
However, the proposed methods can also be applied to other distributions,

as long as the corresponding function −lm,nP

[
T

[lm,n]
m,n ≤ t

]
is convex.

for worker n to calculate the multiplication of lm,n > 0 coded

rows of Am and xm has the cumulative distribution function:

P

[
T [lm,n]
m,n ≤ t

]
=

{
1−e

−um,n
lm,n

(t−am,nlm,n), t ≥ am,nlm,n,

0, otherwise,
(1)

where am,n > 0 is a parameter indicating the minimum

processing time for one coded row, and um,n > 0 is the

parameter modeling the straggling effect.

We consider a heterogeneous environment by assuming that

um,n and am,n are different over different master-worker pairs

(m,n), for ∀m ∈ M and ∀n ∈ N . This assumption is due to

the fact that workers may have different computation speeds,

and the dimensions of Am and xm vary over m.

C. Worker Assignment Policy

We consider two worker assignment policies:

1) Dedicated worker assignment: In this policy, each worker

n is assigned computation tasks from a single master m ∈ M.

Let indicator km,n = 1 if worker n provides computing service

for master m, and km,n = 0 otherwise. Since a worker serves

at most one master, we have
∑M

m=1 km,n ≤ 1, ∀n ∈ N .

2) Probabilistic worker assignment: In this policy, each

worker randomly selects which master to serve according to

probability km,n ∈ [0, 1]. For each worker n ∈ N , we have∑M
m=1 km,n ≤ 1. In Fig. 1, worker 3 selects master 1 to serve

with probability 0.6, and master 2 with probability 0.4.

D. Problem Formulation

Let Xm,n(t) denote the number of multiplication results

(one result refers to the multiplication of one coded row of

Am with xm) master m collects from worker n till time

t. We assume that worker n computes Ãm,nxm and then

sends the result to the master m upon completion, without

further dividing it into subtasks or transmitting any feedbacks

before completion. Therefore, master m can either receive

lm,n results or none from worker n till time t. We denote

the number of aggregated results at master m until time t by

Xm(t), and we have Xm(t) =
∑N

n=1 Xm,n(t).
Our objective is to minimize the average completion time

t, upon which all the masters can aggregate sufficient results

from the workers to recover their computations with high prob-

ability. We aim to design a centralized policy that optimizes

worker assignment {km,n} and load allocation {lm,n}. The

optimization problem is formulated as:

P1 : min
{lm,n,km,n,t}

t (2a)

s.t. P [Xm(t) ≥ Lm] ≥ ρs, ∀m, (2b)

M∑
m=1

km,n ≤ 1, ∀n, (2c)

km,n ∈ K, lm,n ∈ N, ∀m,n, (2d)

where we have K = {0, 1} for dedicated worker assignment,

while K = [0, 1] for probabilistic worker assignment, and N

is the set of non-negative integers. In constraint (2b), ρs is

defined as the probability that master m receives no less than



Lm results until time t; that is, the probability of Amxm

being recovered. Constraint (2c) states that under dedicated

assignment, each worker serves at most one master, and under

probabilistic assignment, the total probability rule is satisfied.

The key challenge to solve P1 is that, constraint (2b) cannot

be explicitly expressed, since it is difficult to find all the

combinations that satisfy Xm(t) ≥ Lm in a heterogeneous

environment with non-uniform loads {lm,n}. Therefore, we

instead consider an approximation to this problem, by substi-

tuting constraint (2b) with an expectation constraint:

P2 : min
{lm,n,km,n,t}

t (3a)

s.t. Lm − E[Xm(t)] ≤ 0, ∀m, (3b)

Constraints (2c), (2d),

where constraint (3b) states that the expected number of results

master m receives until time t is no less than Lm. A similar

approach is used in [5], where the gap between the solutions

of P1 and P2 is proved to be bounded when there is a

single master. We will design algorithms that solve P2 in the

following two sections.

Constraint (3b) can be explicitly expressed. Let I{x} be an

indicator function with value 1 if event {x} is true, and 0
otherwise. If km,n > 0 (and thus lm,n > 0),

E[Xm,n(t)] = E

[
km,nlm,nI

{
T

[lm,n]
m,n ≤t

}
]

=

{
km,nlm,n

[
1−e

−um,n
lm,n

(t−am,nlm,n)
]
, t ≥am,nlm,n,

0, otherwise.
(4)

If km,n = 0 (and thus lm,n = 0), E[Xm,n(t)] = 0. And we

have E[Xm(t)] =
∑N

n=1 E[Xm,n(t)].
We observe that: 1) From constraint (3b), we can infer that

for ∀m ∈ M, the optimal task completion time t∗ satisfies

t∗ ≥ max{n∈Ωm}{am,nlm,n}, where Ωm ⊂ N is the subset

of workers serving master m. In fact, if there exists n0 ∈ Ωm

such that t∗ < am,n0
lm,n0

, we have E[Xm,n0
(t∗)] = 0, i.e.,

master m cannot expect to receive any results from worker n0.

By reducing lm,n0 to satisfy E[Xm,n0(t
∗)] > 0, it is possible to

further reduce t∗. 2) Due to the high dimension of input matrix

Am, lm,n is usually in the order of hundreds or thousands. So

we relax the constraint lm,n ∈ N to lm,n ≥ 0, and ignore the

effect of rounding in the following derivations.

Therefore, by substituting (4), we can simplify (3b) as:

Lm −
N∑

n=1

km,nlm,n

(
1− e

−um,n
lm,n

(t−am,nlm,n)
)
≤ 0. (5)

And problem P2 can be simplified as follows:

P3 : min
{lm,n,km,n,t}

t (6a)

s.t. Constraints (2c), (5),

km,n ∈ K, lm,n ≥ 0, ∀m,n. (6b)

Problem P3 is a non-convex optimization problem due

to the non-convexity of (5), which is in general difficult

to solve. In the following two sections, we will propose

algorithms for dedicated and probabilistic worker assignments

and corresponding load allocations, respectively.

III. DEDICATED WORKER ASSIGNMENT

In this section, we solve P3 for dedicated worker assign-

ment, where K = {0, 1}. Given the assignment of workers,

we first derive the optimal load allocation. Then the worker

assignment can be transformed into a max-min allocation

problem, for which NP-hardness is shown and two greedy

algorithms are developed.

A. Optimal Load Allocation for a Given Worker Assignment

We first assume that the subset of workers that serve master

m is given by Ωm ⊂ N , and derive the optimal load allocation

for master m, that minimizes the approximate completion

time. The problem is formulated as:

P4 : min
{lm,n, tm}

tm (7a)

s.t. Lm − E[Xm(tm)] ≤ 0, (7b)

lm,n ≥ 0, ∀n ∈ Ωm, (7c)

where tm is the approximate completion time of master m,

and E[Xm(tm)] =
∑

n∈Ωm
lm,n

(
1− e

−um,n
lm,n

(tm−am,nlm,n)
)

.

Lemma 1. Problem P4 is a convex optimization problem.

Define W−1(x) as the lower branch of Lambert W func-

tion, where x ≤ −1 and W−1(xe
x) = x. Let φm,n �

1
um,n

[−W−1(−e−um,nam,n−1)− 1
]
. By using the Lagrange

multiplier method and solving the Karush-Kuhn-Tucker (KKT)

conditions of P4, we get the following theorem.

Theorem 1. For master m ∈ M, and a given subset of
workers Ωm ∈ N serving this master, the optimal load allo-
cation l∗m,n derived from P4, and the corresponding minimum
approximate completion time t∗m are given by:

l∗m,n=
Lm

φm,n

∑
n∈Ωm

um,n

1+um,nφm,n

, t∗m=
Lm∑

n∈Ωm

um,n

1+um,nφm,n

.

B. Greedy Worker Assignment Algorithms

Define Vm � 1
t∗m

, and let

vm,n � um,n

Lm(1 + um,nφm,n)
. (8)

Based on Theorem 1, Vm = 1
Lm

∑
n∈Ωm

um,n

1+um,nφm,n
=∑N

n=1 km,nvm,n. Since min{km,n} maxm∈M t∗m is equivalent

to max{km,n} minm∈M Vm, we have the proposition below.

Proposition 1. Problem P3 is equivalent to

P5 : max
{km,n}

min
m∈M

N∑
n=1

km,nvm,n (9a)

s.t.

M∑
m=1

km,n ≤ 1, km,n ∈ {0, 1}, ∀m,n. (9b)



Algorithm 1 Iterated Greedy Algorithm for Dedicated Worker

Assignment

1: Input: Ωm = ∅, Vm = 0, and {vm,n} according to (8).

2: for n = 1, ..., N do � Initialization
3: m∗ = argmaxm∈M vm,n.

4: Vm∗ = Vm∗ + vm∗,n, Ωm∗ = Ωm∗ ∪ {n}.

5: end for
6: while iteration is not terminated do � Main iteration
7: for n = 1, ..., |N | do � Insertion
8: Find master m1 that worker n is serving.

9: m2 = argminm∈M/{m1} Vm.

10: V ′
m1

= Vm1
− vm1,n, V ′

m2
= Vm2

+ vm2,n.

11: V ′
m = Vm, ∀m ∈ M/{m1,m2}.

12: if minm∈M V ′
m > minm∈M Vm then

13: Ωm1
= Ωm1

− {n}, Ωm2
= Ωm2

+ {n}.

14: end if
15: end for
16: for n1, n2 = 1, ...|N | do � Interchange
17: Masters m1,m2 served by workers n1, n2, V ′

m1
=

Vm1
−vm1,n1

+vm1,n2
, and V ′

m2
= Vm2

−vm2,n2
+vm2,n1

.

18: if m1 	= m2, n1 	= n2, vm1,n1
+vm2,n2

< vm1,n2
+

vm2,n1 , V ′
m1

> Vmin, and V ′
m2

> Vmin then
19: Ωm1 = Ωm1 − {n1}+ {n2}.

20: Ωm2
= Ωm2

− {n2}+ {n1}.

21: end if
22: end for
23: Randomly remove a subset of Ns workers, and update

Vm based on the current assignment. � Exploration
24: while Ns 	= ∅ do
25: {m∗, n∗} = argmaxm∈M,n∈Ns

vm,n.

26: Vm∗ = Vm∗ + vm∗,n∗ .

27: Ωm∗ = Ωm∗ ∪ {n∗}, Ns = Ns − {n∗}.

28: end while
29: end while

Algorithm 2 Simple Greedy Algorithm for Dedicated Worker

Assignment

1: Input: M0 = {1, 2, ...,M}, N0 = {1, 2, ..., N}, Ωm = ∅,

Vm = 0, and {vm,n} according to (8).

2: while M0 	= ∅ do � Initialization
3: {m∗, n∗} = argmaxm∈M0,n∈N0 vm,n.

4: Vm∗ = Vm∗ + vm∗,n∗ .

5: Ωm = Ωm∪n∗, M0 = M0−{m∗}, N0 = N0−{n∗}.

6: end while
7: while N0 	= ∅ do � Main loop
8: Find m∗ = argminm∈M Vm.

9: Find n∗ = argmaxn∈N0 vm∗,n.

10: Vm∗ = Vm∗ + vm∗,n∗ .

11: Ωm = Ωm ∪ n∗, N0 = N0 − {n∗}.

12: end while

Problem P5 is a combinatorial optimization problem called

max-min allocation, which is motivated by the fair allocation

of indivisible goods [12]–[14]. Specifically, there are M agents

and N items. Each item has a unique value for each agent, and

can only be allocated to one agent. The goal is to maximize the

minimum sum value of agents, by allocating items as fairly as

possible. In our problem, each master corresponds to an agent
with sum value Vm, and each worker n can be considered as
an item with value vm,n for master m. The problem can be

reduced to a NP-complete partitioning problem [15], when

considering only 2 agents and that each item has identical

value for both agents. Therefore, problem P5 is NP-hard. An

O(N ε)-approximation algorithm in time NO( 1
ε ) is proposed

in [13] for max-min allocation, with ε ≥ 9 log logN
logN . Another

polynomial-time algorithm is proposed in [14], guaranteeing

O( 1
M log3 M

) approximation to the optimum. However, these

algorithms are complex and difficult to implement. We propose

two low-complexity greedy algorithms as follows.

An iterated greedy algorithm is proposed in Algorithm 1,

which is inspired by [16], where a similar min-max fairness

problem is investigated. In the initialization phase, each worker

is assigned to the master for which its value vm,n is the

highest. The main iteration has the following three phases:

1) Insertion: We remove each worker n from the current

master m1, and assign it to a master m2 	= m1 with minimum

sum value Vm2 . If the minimum sum value Vm is improved,

let worker n serve master m2. The complexity is O(MN).
2) Interchange: We pick two workers n1, n2 that serve

two masters m1, m2 respectively, and interchange their as-

signments. If the minimum sum minVm is improved, and

the overall system performance is improved (i.e., vm1,n1 +
vm2,n2

< vm1,n2
+ vm2,n1

), the interchange is kept. The

complexity is O(N2). Note that the insertion and interchange

are repeated for multiple times within each iteration, in order

to obtain a local optimum.

3) Exploration: We randomly remove some workers from

the current assignment, and allocate them in a greedy manner.

This operation is an exploration which prevents the algorithm

to be stuck in a local optimum. When the number of iterations

reach a predefined maximum, or the performance does not

improve any more, the main loop is terminated.

While Algorithm 1 still requires iterations to obtain a good

assignment, Algorithm 2, which is inspired by the largest-
value-first algorithm in [12], is even simpler with only one

round. In a homogeneous case with v1,n = · · · = vM,n, the

algorithm finds an agent m with minimum sum value Vm,

and assigns a remaining item with the largest value vm,n.

The algorithm provides 4
3 approximation to the optimum. We

extend the algorithm to our heterogeneous case. As shown

in Algorithm 2, in the initialization phase, we find a master

without any workers assigned, and allocate an available worker

with largest contribution for it. In the main loop, we always

select master m with the minimum sum value Vm, and allocate

a remaining worker that has the maximum value vm,n for this

master. The overall complexity of Algorithm 2 is O(N2).

IV. PROBABILISTIC WORKER ASSIGNMENT

In this section, we solve P3 for the probabilistic worker

assignment, where K = [0, 1]. The key challenge is that



constraint (3b) is non-convex. We decompose (3b) into the dif-

ference of convex functions, and adopt SCA method to jointly

solve the worker assignment and load allocation problems.
Let w � {l, k, t}, g(w) � −kl, and h(w) � kle−

ut
l . It is

easy to see that g+(w) � 1
2

(
k2 + l2

)
, g−(w) � 1

2 (k + l)
2
,

h+(w) � 1
2

(
k + le−

ut
l

)2

, and h−(w) � 1
2

(
k2 + l2e−

2ut
l

)
are all convex, and we have g(w) = g+(w)−g−(w), h(w) =
h+(w) − h−(w). Given any two points w, z, the convex

upper approximations of g(w) and h(w) can be obtained [17]:

g̃(w, z) � g+(w) − g−(z) − ∇wg−(z)T (w − z) ≥ g(w),
h̃(w, z) � h+(w)− h−(z)−∇wh−(z)T (w − z) ≥ h(w).

Let subscript {m,n} denote the variables, parameters and

functions related to master m and worker n, e.g., wm,n =

{lm,n, km,n, t}, hm,n(wm,n) = lm,nkm,ne
−um,nt

lm,n . Let wm �
{wm,1, ...,wm,N}, zm � {zm,1, ..., zm,N}.

Lemma 2. The left-hand side of constraint (5) can be approx-
imated by a convex function as follows:

Lm − E[Xm(t)] ≤ Lm +

N∑
n=1

[
g̃m,n(wm,n, zm,n)

+ eum,nam,n h̃m,n(wm,n, zm,n)
]
� q̃m(wm, zm). (10)

Let z � {z1, ..., zM} be a feasible point of P3. The convex

approximation to P3 at point z, defined as P(z), is given by:

P(z) : min
{lm,n,km,n,t}

t (11a)

s.t. q̃m(wm, zm) ≤ 0, ∀m, (11b)

Constraints (2c), (6b).

A probabilistic worker assignment and load allocation algo-

rithm is proposed in Algorithm 3 based on the SCA method.

A diminishing step-size rule is adopted with decreasing ratio

α ∈ (0, 1), guaranteeing the convergence of the SCA method

[17], and in line 5, γr is the step-size in the rth iteration.

Starting from a feasible point z0 of P3, we iteratively solve

convex optimization problems P(zr), in which constraint

(5) is replaced by its upper convex approximation (11b).

The iteration terminates when the solution is stationary (e.g.,

‖wr − zr‖2 ≤ ε), and according to Theorem 2 in [17], the

stationary solution is a local optimum.

A. Comparison of Dedicated and Probabilistic Assignments
We remark that the completion time of probabilistic worker

assignment is a lower bound on what is achieved by dedicated

worker assignment, since any feasible point of dedicated

assignment is also feasible for probabilistic assignment. How-

ever, dedicated assignment simplifies the connections between

workers and masters, and requires less communication for

multicasting xm and less storage at each worker. Moreover,

the proposed dedicated assignment algorithms have lower

computational complexity and are easier to implement.

V. SIMULATION RESULTS

In this section, we evaluate the average task completion time

of the proposed dedicated and probabilistic worker assign-

ment algorithms, in both small-scale and large-scale scenarios.

Algorithm 3 SCA-based Probabilistic Worker Assignment and

Load Allocation Algorithm

1: Input: find a feasible point of P3, z0, set γ0 = 1, r = 0,

α ∈ (0, 1).
2: while zr is not a stationary solution do
3: Solve the optimal solution wr of P(zr).
4: zr+1 = zr + γr(wr − zr).
5: γr+1 = γr(1− αγr), r ← r + 1.

6: end while

Fig. 2. The CDF of task completion time achieved by different worker
assignment and load allocation algorithms with 2 masters and 20 workers.
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In the small-scale scenario, we consider M = 2 masters

and N = 20 workers, and three benchmarks: 1) Uncoded
computing with uniform dedicated worker assignment: each

master is assigned an equal number of N
M workers, and Am

is equally partitioned into N
M sub-matrices without coding,

each with LmM
N rows. 2) Coded computing with uniform

dedicated worker assignment [5]: each master is assigned

an equal number of N
M workers, and the load is allocated

according to Theorem 1. 3) Brute-force search for dedicated
worker assignment: the oracle solution for dedicated worker

assignment is obtained by searching all possible combinations,

and the load is allocated according to Theorem 1. In the large-

scale scenario, we consider M = 4 masters and N = 50



workers, and only use the first two benchmarks, due to the

high complexity of the brute-force search.

The straggling parameter um,n is randomly selected within

[1, 5] ms−1, the shift parameter is set as am,n = 1
um,n

ms,

and Lm = 105, ∀m [5]. In Algorithm 1, we randomly remove
N
M workers for each exploration. In Algorithm 3, we set the

convergence criteria as |1 − t′
t | < 10−6, decreasing ratio

α = 10−3, and use CVX toolbox3 to solve each convex

approximation problem. We obtain the worker assignment and

load allocation from the algorithms that minimize the approx-

imate completion time. Then we carry out 105 Monte Carlo

realizations and calculate the empirical cumulative distribution

function (CDF) and the average of task completion time.

Fig. 2 shows the CDFs of the task completion time.

The proposed greedy dedicated assignment and SCA-based

probabilistic assignment algorithms outperform the uncoded

and coded benchmarks with uniform assignment of dedicated

workers. The CDFs achieved by iterated and greedy algo-

rithms are very close, and both performances are close to

the optimal brute-force search algorithm. Specifically, when

the successful probability ρs = 0.98, the three dedicated

assignment algorithms all achieve task completion time 1.40s.
Probabilistic assignment further outperforms the dedicated

assignment, which is consistent with the fact that it is a

lower bound for dedicated assignment. When ρs = 0.98,

probabilistic assignment achieves task completion time 1.38s.
Fig. 3 compares the average task completion time achieved

by the proposed algorithms and benchmarks. The first four

groups of bars show the average time each master needs

to finish its own task using different algorithms. The fifth

group of bars show the average task completion time of the

system, which is what we aim to minimize, obtained by

averaging the maximum time of each realization. From the

fifth group of bars, we can see that all the proposed algorithms

reduce the delay performance by more than 80% over uncoded

benchmark, and more than 49% over coded benchmark. The

performance gain is mainly achieved by taking into account

the heterogeneity of the system. From the first four groups of

bars, we can see that the average delay of each master achieved

by our proposed algorithms are very close, indicating that the

workers and loads are assigned in a balanced manner.

In Fig. 4, the impact of the decreasing ratio α on the

convergence of SCA-based probabilistic assignment algorithm

is evaluated, in the scenario with 4 masters and 50 workers.

The decreasing ratio α decides the step-size γr, and thus

the convergence rate of the SCA algorithm. We can see that

by choosing a proper α, the proposed SCA algorithm can

converge after 100 iterations, and outperforms the iterated

greedy algorithm for dedicated worker assignment.

VI. CONCLUSIONS

We have considered a joint worker assignment and load

allocation problem in a distributed computing system with

heterogeneous computing servers, i.e., workers, and multiple

3http://cvxr.com/cvx/

master nodes competing for these workers. MDS coding has

been adopted by the masters to mitigate the straggler effect,

and both dedicated and probabilistic assignment algorithms

have been proposed, in order to minimize the average task

completion time. Simulation results show that the proposed

algorithms can reduce the task completion time by 80%
compared to uncoded task assignment, and 49% over an

unbalanced coded scheme. While probabilistic assignment is

more general, we have observed through simulations that

the two have similar delay performances. We have noted

that dedicated assignment has lower computational complexity

and lower communication and storage requirements, beneficial

for practical implementations. As future work, we plan to

take communication delay into consideration, and develop

decentralized algorithms.

REFERENCES

[1] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless net-
work intelligence at the edge,” [Online] Available: https://arxiv.org
/abs/1812.02858, Dec. 2018.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

[3] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: avoiding stragglers in distributed learning,” in Proc. Int. Conf.
on Machine Learning, Sydney, Australia, Aug. 2017, pp. 3368-3376.

[4] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” IEEE
Global Commun. Conf. Workshop, Washington, DC, USA, Dec. 2016.

[5] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr,
“Coded computation over heterogeneous clusters,” [Online] Available:
https://arxiv.org/abs/1701.05973, Jan. 2017.

[6] N. Ferdinand, and S. C. Draper, “Hierarchical coded computation,” in
Proc. IEEE Int. Symp. on Inform. Theory (ISIT), Vail, CO, USA, Jun.
2018, pp. 1620-1624.

[7] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P.
Grover, “On the optimal recovery threshold of coded matrix multiplica-
tion,” [Online] Available: https://arxiv.org/abs/1801.10292, May 2018.
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