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Abstract—In this paper, we present Situationally-aware
Multiple-Access and gRant-free Transmissions (SMART) to ad-
dress the low-latency multiple access issue in wireless uplinks
with massive machine-type communications (mMTC). SMART
is smart in a distributed manner, as terminals are trained to be
situationally aware. The solution is based on a distributed rein-
forcement learning framework which is capable of dealing with
diversified quality-of-service requirements. As such, terminals
can make informed transmission decisions by themselves, e.g., by
taking into account the urgency of their packets and system load.
In this way, the effective number of concurrent access terminals is
significantly reduced while maintaining the system performance.
Compared with conventional contention-based random access
schemes, SMART has significant advantages. Building upon our
previous work [1], this work presents the first SMART algorithm
that is scalable to massive terminals (hundreds) and stable with
near-optimal performance.

I. INTRODUCTION

5G and beyond wireless networks are promising to achieve

near-instantaneous communications (1-10 ms) for high-density

(106 devices/km2) machine-type terminals to enable novel

applications such as autonomous driving, Industrial Internet of

Things (IIoT) and intelligent health care. Based on the current

standardization progress and research trend, this represents

a feasible target in the wireless downlinks, wherein ultra-

Reliable Low-Latency Communications (uRLLC) traffic can

be preemptively overlapped with enhanced Mobile Broadband

(eMBB) traffic in the time-frequency domain [2]; that is, the

uRLLC traffic can be scheduled immediately upon arrival on

top of the existing eMBB traffic, which significantly reduces

the scheduling delay. The root reason of the feasibility of

this approach is the centralized scheduling nature in wireless

downlinks, where the scheduling decisions can be made cen-

trally and the corresponding control signaling is transmitted to

the terminals occupying the same physical resources, e.g., by

the Physical Downlink Control Channel (PDCCH) in 4G/5G.
However, the wireless medium access delay in the uplinks

is much more challenging due to the decentralized nature

of terminals and their stochastic (sometimes bursty) traffic

demands, e.g., for safety massages in autonomous driving. In

grant-based uplink access schemes, which are—as of today

with 3GPP Rel 15 [3]—still the selected access schemes in

5G, the access delay is dominated by the time of waiting for

an uplink access opportunity, i.e., Scheduling Request (SR).

Typically, the uplink access delay is around 20-30 ms, which

is insufficient for uRLLC traffic. In addition, this excludes the

extra access delay when SR is blocked due to bursty traffic

demand. Towards this end, grant-free [4] access schemes are

proposed to enable arrive-and-go transmissions in the wire-

less uplinks. Specifically, terminals with packets to transmit

undergo a contention process, and winners directly transmit

their packets without having to wait for downlink scheduling

grants. Grant-free transmissions significantly reduce the uplink

access delay when traffic load is low [4].

On the other hand, inherited from its contention-based

mechanism, the grant-free transmission scheme suffers severe

performance degradation when the number of concurrent ter-

minals is large. To address this issue, extensive efforts have

been made, which can be categorized by either aiming to

prioritize the access [5], [6], or to enhance the physical access

capabilities [4], [7]. For the purpose of access prioritization,

the Extended Access Barring (EAB) technique has been

suggested [6]. This technique randomly selects a certain set

of terminals to transmit by broadcasting a threshold by the

access point and each terminal generating a random number.

Prioritized Random Access (PRA) prescribes different access

backoff mechanisms and resource allocation for terminals

with pre-defined priority classes, e.g., human-to-human traffic,

low- and high-priority traffic. Sparse-Code Multiple-Access

(SCMA) [4] and beamforming [7] techniques can be regarded

as aiming to enhance the number of concurrent terminals by

strengthening the receiver capability in the code and spatial

domains, respectively.

In this paper, we propose a novel multi-agent learning-

based uplink access framework for real-time signal transmis-

sions with diversified Quality-of-Service (QoS) requirements,

namely Situationally-aware Multiple-Access and gRant-free

Transmissions (SMART). SMART is smart distributedly, in

the sense that terminals’ access probabilities, or equivalently

backoff window sizes, are based on their individual situa-
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Fig. 1. SMART framework, wherein heterogeneous QoS requirements can
be simultaneously satisfied by learning-based access strategies according to
terminals’ states.

tions (formally defined as their Markov states) and learned

through a multi-agent reinforcement learning framework. Such

an approach is promising in real-world applications wherein

terminals collect sensory information about the physical world;

the urgency of the information is time-varying and known to

the terminals such that terminals can decide the transmission

strategy dynamically thereby. Based on SMART, the effective
number of concurrent terminals can be reduced, hence the

uplink access delay. In addition, heterogeneous QoS can be

incorporated in this framework since no restrictions on the

Markov states are enforced.

Related work stems from the recent emerging research

interests of various latency, or age, metrics, e.g., Age of

Information (AoI) [8], Age of Synchronization (AoS) [9],

Age upon Decision (AuD) [10] and Inter-Delivery Time

(IDT) [11]. These age metrics are proposed for different

application scenarios, whereas sharing a common feature that

a terminal which is aiming to optimize its corresponding

metric has dynamic, time-varying transmission urgency. In

our previous works [12]–[15], we have derived closed-form

Whittle’s index based policies and decentralized scheduling

schemes exclusively for AoI optimizations. Based on our

knowledge, this is the first work that achieves scalable Multi-

Agent Reinforcement Learning (MARL)-based random access

for heterogeneous QoS requirements.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The considered system model is shown in Fig. 1. A mul-

tiaccess network is considered wherein an information fusion

center (FC) collects information from N distributed terminals

with possibly heterogeneous QoS requirements. Time is slotted

and we assume the terminals are synchronized, which can

be realized by assuming that the terminals have maintained

synchronization by receiving the Primary Synchronization

Signal (PSS) from the FC but with no scheduling grants.

The transmission model in the uplink is collision-based. A

transmission frame consists of a data slot and several con-

tention mini-slots. A data slot (with length Ts) is prefixed

by several contention mini-slots (with length δ). In 5G New

Radio (NR), the concept of mini-slots [7] is introduced which

is the minimum scheduling time unit, occupying as short as

one OFDM symbol. In addition to the scalable numerology

of NR, wherein one slot, consisting of 14 OFDM symbols,

can be 0.125 ms with 120 KHz subcarrier spacing (SCS),

each mini-slot can be quite short (δ = 1/56 ms or lower

with larger SCS). We assume a p-persistent Carrier-Sense

Multiple Access (CSMA) framework [16], whereby terminal-

i transmits with a probability pi in each contention mini-slot

when it senses the channel is idle; otherwise it stays silent.

Note that, different from homogeneous p-persistent CSMA,

the persistent levels of terminals can be different, i.e., pi
differs among terminals—in this way, the terminals can be

situationally-aware and thereby choosing appropriate pi. Note

that in the Q-CSMA scheme [17], pi is determined by the

queue length of each terminal, which however only applies

to throughput optimizations. Based on the definition of p-

persistent CSMA, the terminal who has won the contention

transmits in the following data slot and the others sense that

the channel is busy and stay silent. After a data slot, the

FC feeds back an acknowledgment packet (ACK) indicating

successful reception; otherwise a NACK packet is fed back.

Note that a p-persistent CSMA protocol closely approximates

the IEEE 802.11 CSMA protocol which employs uniform

backoff counters and binary exponential back, if p and the

backoff window size are chosen such that the average backoff

intervals of the two protocols are identical.

In this work, we only consider the access to a single channel.

By using e.g., SCMA, beamforming and multiple frequency

sub-channels, it is certainly possible to enable Multiple Packets

Reception (MPR) simultaneously. A straightforward approach

to extend from single-channel to MPR is to let the terminals

choose one channel randomly or uniformly pre-allocate the

channels.

Problem Formulation: The objective is to maximize the

overall utility of all terminals over time, i.e.,

max
pi(t),i=1,··· ,N

N∑
i=1

ωiU i, where pi(t) only depends on si(t),

(1)

wherein U i � lim infT→∞ 1
T

∑T
t=1 Ui(t), the utility function

of terminal-i at time t is denoted by Ui(t) which reflects the

QoS requirements and will be instantiated in the following

section. The terminal weight is denoted by ωi. In each time

slot, the terminals choose their transmission probability pi(t),
depending only on their own situation, i.e., Markov states

si(t), by learning-based approaches that will be specified

later—this decentralized approach is especially important in

future massive IoT systems, in order to avoid the prohibitive

high signaling overhead for centralized scheduling methods.

General Situation (Markov State) Characterizations:

The situation that terminal-i is in at time t is denoted by its

Markov state, i.e., si(t), which is a real-valued vector. The

definition is quite general, and encompasses arbitrary state

space and transition dynamics. Note that even for non-Markov

states, we can define the state as the state concatenation of

several historical states as approximated Markov states.
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III. PROPOSED SCALABLE MARL APPROACH

When considering the general Markov state definition in

the previous section, it is quite challenging to find a universal

analytical solution for various types of states and QoS require-

ments. For example, our previous works [13]–[15] found that,

even for AoI optimizations alone, this can be quite challenging,

let alone for the co-existence of diversified types of states.

In view of this, we resort to the MARL framework. RL is

a model-free control mechanism and therefore is applicable

to arbitrary types of states and state transitions. The unique

property of this problem is that each terminal, or agent in RL

terms, can only observe its own states and make decisions

thereby—this is referred to as a partially observable identical
payoff stochastic game (POIPSG) [18], which is used to model

a problem wherein multiple agents learn simultaneously with

a single objective (total utility functions) and observations of

only local state information. The game notation reflects the

interplay among terminals which is quite different from the

conventional static environment setting in RL as agents can

interfere with each other while learning, and is thus named

MARL.

The MARL nature of the problem poses significant chal-

lenges to find a scalable and stable solution. The challenging

part, which is well-known for MARL problems, is that each

agent only observes its own states evolution over time, and its

environment involves the actions of other agents, thus making

it non-stationary—like trying to learn from a moving target.

At the same time, all agents try to learn a good policy, and it

is very hard to design a stable and scalable (massive number

of terminals are common in IoT) solution. As shown in the

following sections, we have tried several approaches, including

state-of-the-art MARL schemes, and find that the considered

problem is not a trivial task. In the following, we describe

these approaches and propose a novel scheme which combines

the idea of Whittle’s index and RL, achieving near-optimal

performances consistently in various scenarios.

A. Transmission Tax Based Decoupled MARL Approach

First, we will introduce the proposed approach, namely

Transmission Tax based decoupled MARL approach (TT). TT

is based on the idea of decoupled RL training to avoid the

convergence issue introduced by the interplay among agents in

MARL. The challenging part is: How to ensure that the trained

policy using decoupled RL training also works well under the

multi-agent setting? In particular, if we naively train each agent

separately with the objective of optimizing its own utility, then

all agents would become selfish and putting them together,

the channel would be jammed all the time because no agents

are trained to cooperate with others. We resolve this issue

by introducing a universal transmission tax for all terminals

when trained separately. That is, when an agent is trained, a

transmission tax (i.e., a cost m) is added whenever the agent

choose to transmit; when it chooses to stay silent, no tax is

added. By doing this, agents are trained to be less selfish, and

more conservative in transmissions, i.e., only when an agent is

in a situation where it has a high-value packet would it actually

transmits since otherwise the transmission tax would surpass

the value of a transmission. Surprisingly and unsurprisingly,

this approach works well in various scenarios. The surprising

part is the simple heuristics behind TT; the unsurprising part

is that TT is in fact based on the idea of Whittle’s index which

is widely known to be a near-optimal approach for this kind of

problems, specifically restless multi-armed bandit (RMAB).

The connection with Whittle’s index approach is illustrated

as follows. Based on the Whittle’s index approach, the utility

maximization scheduling problem is decomposed to N sub-

problems, where each subproblem can be formulated based on

the Bellman optimality equations (average cost with infinite-

horizon and relative cost-to-go functions [19]) as

f(s) + Ĵ∗ = min

{
R(0)

s +
∑

s′ P(0)
ss′f(s′),

m+R(1)
s +

∑
s′ P(1)

ss′f(s′)

}
, (2)

wherein the top and bottom terms in the minimization op-

erator represent the cost-to-go from state s onwards with

the action of silent and transmit, respectively. The expected

reward functions are denoted by R(0)
s and R(1)

s respectively

for both actions; the transition matrices are denoted likewise.

The relative cost-to-go function of state s and the average

reward are denoted by f(s) and Ĵ∗ respectively. The terminal

index is omitted for brevity while one should note that the

reward functions, transition matrices and cost-to-go functions

can all be different among terminals to reflect heterogeneous

states and QoS, except for the transmission tax m which is

identical among terminals.

There are two differences between TT and an exact Whit-

tle’s index policy. First, the scheduling decisions are central-

ized and deterministic in the Whittle’s index policy, i.e., the

index policy solves for the equivalent transmission tax for

each state that makes the scheduling options of (2) equally

good, and compares among terminals to find the one with the

largest index. However, the decentralized transmission strategy

considered in our formulation is stochastic, which is necessary

in distributed settings. Secondly, the Whittle’s index approach

seeks for the maximum index (equivalent transmission tax)

among terminals, while our approach lets all terminals share

an identical m. In practice, one can argue that a scheme

wherein a common transmission tax threshold is fixed, and

terminals calculate their own decisions by solving the Markov

Decision Process (MDP) of (2) and content for a transmission

opportunity if the decision is to transmit (otherwise silent) is

equivalent to the Whittle’s index approach, if the transmission

tax threshold is optimized.

Based on this intuition, we present TT in Algorithm 1. A

golden search method (and hence the coefficients in Step 3),

combined with Monte Carlo policy evaluations, is leveraged

to find the optimal transmission tax; in Step 17 and 19, we

can find the update of the transmission taxes accordingly. At

each iteration, every terminal is trained separately based on

the current transmission tax. We adopt the well-known deep

Q-learning (DQN) [20] algorithm to accomplish the single-

agent training tasks, and the model parameters for terminal-i
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is denoted by wi. After single-agent training, all terminals use

the current model parameters to participate in the multi-agent

training phase, wherein each terminal would transmit with

probability calculated based on [16] if it senses the channel

is idle and its instantaneous DQN output is to transmit based

on its current state; the FC feeds back an ACK/NACK after

each data slot; the FC calculates the average reward (i.e., time-

average utility) in each iteration and update the transmission

tax accordingly. The process continues until the transmission

tax converges. After the training, all terminals use the final

model parameters for the random access procedure. In Step

3, the length of a contention mini-slot is denoted by δ, and ρ
controls how many terminals contend in each iteration.

Algorithm 1: TT

1 Initialization:

2 Terminals: Initialize model parameters wi

(i = 1, · · · , N ) following the normal distribution.

3 FC: Use mmax and mmin to denote the maximum and

minimum transmission taxes, respectively. Set

mmin = 0, m1 = 3−√
5

2 mmax, m2 =
√
5−1
2 mmax,

Ntarget = ρN , and ptx = min
{√

2δ
TsN2

target
, 1
Ntarget

}
.

4 for k = {1, 2} do
5 m = mk.

6 Decoupled Single-Agent Training:

7 for i = 1 : N do
8 DQN training for terminal-i to solve the MDP

expressed in (2) with given m to update their

model parameters wi. The action output of

DQNs is transmit or silent.

9 Multi-Agent Training:

10 for t = 1 : T do
11 for i = 1 : N do
12 if Terminal-i senses the channel is idle and

DQN of terminal-i outputs transmit then
13 Terminal-i transmits with probability

ptx in this time slot.

14 else
15 Terminal-i stays silent in this time slot.

16 Rk = average utility over time T .

17 if R1 < R2 then
18 mmin = m1, m1 = m2, m2 =

√
5−1
2

m1 +
3−√

5
2

mmax,

19 else
20 mmax = m2, m2 = m1, m1 =

√
5−1
2

m2 +
3−√

5
2

mmin

21 if |mmax −mmin| > ε then
22 Return to Step 4.

23 else
24 TT training is completed.

B. MARL Schemes for Comparisons

We also leverage the state-of-the-art MARL algorithms in

this setting and investigate their performances. In this subsec-

tion, two such algorithms are introduced which achieve reason-

ably good performances, whereas under-performing compared

with TT.

MARL with Auxiliary State: One of the main technique

in MARL to combat the instability of multi-agent learning

is to use auxiliary state to let each terminal have knowledge

of other terminals’ states. In this way, instead of treating

the environment stationary using conventional RL methods

while the real environment involves the interplay with other

terminals and thus non-stationary, leveraging auxiliary state

can explicitly model the behavior of other agents.

Specifically, we adopt a Deep Deterministic Policy Gradient

(DDPG) [21] based architecture for the agents. Each agent

only has information about its own state, the auxiliary state

indicates whether its last transmission attempt was successful

or not (i.e., a collision flag). The action it takes represents the

transmission probability for the agent at the moment, and is

a real value within the 0 − 1 interval. The reward it receives

is provided by the FC, which computes it based on a global

fairness formula—for the homogeneous AoI optimization case,

the sum of squared AoIs observed at the FC is used. Note that

this reward is received only if the agent manages to transmit

successfully; if the transmission fails, the reward it receives is

0. All agents are trained simultaneously. Although this seems

more efficient compared with TT, we find that, in general, it

is quite difficult to achieve both stability and scalability. As

shown later in the simulation results, performance degradation

is evident based on this approach.

Cross-Entropy Based Method: Another simple, yet some-

times powerful, scheme is also tested, namely the cross-

entropy (CE) based method. The CE based method can be

categorized as an evolutionary algorithm—it selects the pa-

rameters that survive the natural selection, i.e., perform better

than others, in each iteration and evolves over time. The

implementation details are omitted in this paper, as they have

been mentioned in our previous work [1].

IV. SIMULATION RESULTS

The performance of the proposed schemes is investigated

by computer simulations. First, the time-average AoI of CE-

based approach, MARL with auxiliary state and TT schemes

is tested in comparison with the genie-aided Whittle’s index

approach which schedules the terminal with the largest index.

The packet arrival rate is 0.1 packets/ms, the length of a

minislot is 0.01 ms, and the numbers of agents are 3 and

30 in Fig. 2(a) and 2(b) respectively, and the y-axis is the

running average AoI over time (x-axis). It is observed that

while the CE-based approach can converge slowly when there

are 3 agents, it fails when scaling up to 30 agents; the same

scalability issue also occurs with the MARL approach with

auxiliary state—it takes too long to converge when the number

of agents scale up to, e.g., 100 agents. In the mean time, it

is found that, since the training for each agent can be made
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Fig. 2. Performance evaluations for (a) AoI with 3 agents; (b) AoI with 30 agents; (c) Diversified QoS requirements for more agents. The packet arrival
rates are 0.1 packets/ms, the energy arrival rate is 0.2 packets/ms, energy buffer size is 1, and the length of a minislot is 0.01 ms.

offline by storing a mapping table from transmission tax m to

the model parameters wi, the time for TT to converge only

consists of the time for the golden search iteration, which is

independent of the number of agents. Therefore, TT has good

scalability thanks to its separate training architecture.
When scaling up to more agents in Fig. 2(c), the average

utility—which in this case include AoI, AoS and energy

harvesting (EH) sensors that are optimizing the IDT and each

occupy one third of the total number of terminals—shows

that the proposed framework is scalable and applicable for

heterogeneous QoS requirements. The energy arrival rate is

0.2 packets/ms and the energy buffer size is one for the EH

sensor. The detailed description of the utilities is omitted due

to lack of space.

V. CONCLUSIONS

In this paper, we propose a scalable distributed learning

based framework for SMART. By arming the terminals with

situationally-awareness, only valuable packets—from the per-

spective of specific applications with diversified QoS require-

ments, e.g., AoI, IDT and AoS—are transmitted in the wireless

uplinks to improve the efficiency and latency performance of

current 5G networks. By introducing the transmission tax thus

decoupling the training processes of terminals, the proposed

framework, as revealed by the simulation results, is scalable

and stable. Future work includes more realistic experiments

and considerations for specific applications.

ACKNOWLEDGEMENT

This work is sponsored in part by the Nature Science

Foundation of China (No. 61861136003, No. 91638204, No.

61571265, No. 61621091) and Hitachi Ltd.

REFERENCES

[1] Z. Jiang, S. Zhou, and Z. Niu, “Distributed policy learning based
random access for diversified QoS requirements,” in IEEE International
Conference on Communications (ICC), Jun 2019.

[2] A. Anand, G. D. Veciana, and S. Shakkottai, “Joint scheduling of
URLLC and eMBB traffic in 5G wireless networks,” in IEEE INFO-
COM, Apr 2018, pp. 1970–1978.

[3] 3GPP TR. 21.915 v 0.6.0 “Initial access and mobility”.
[4] J. Zhang, L. Lu, Y. Sun, Y. Chen, J. Liang, J. Liu, H. Yang, S. Xing,

Y. Wu, J. Ma, I. B. F. Murias, and F. J. L. Hernando, “PoC of SCMA-
based uplink grant-free transmission in UCNC for 5G,” IEEE J. Select.
Areas Commun., vol. 35, no. 6, pp. 1353–1362, Jun 2017.

[5] J. Cheng, C. Lee, and T. Lin, “Prioritized random access with dynamic
access barring for RAN overload in 3GPP LTE-A networks,” in 2011
IEEE GLOBECOM Workshops (GC Wkshps), Dec 2011, pp. 368–372.

[6] R. Cheng, J. Chen, D. Chen, and C. Wei, “Modeling and analysis of an
extended access barring algorithm for machine-type communications in
LTE-A networks,” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp.
2956–2968, Jun 2015.

[7] S. Lien, S. Shieh, Y. Huang, B. Su, Y. Hsu, and H. Wei, “5G new radio:
Waveform, frame structure, multiple access, and initial access,” IEEE
Commun. Mag., vol. 55, no. 6, pp. 64–71, Jun 2017.

[8] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in IEEE INFOCOM, Mar 2012, pp. 2731–2735.

[9] J. Zhong, R. D. Yates, and E. Soljanin, “Two freshness metrics for local
cache refresh,” in IEEE Int’l Symp. Info. Theory, Jun 2018, pp. 1924–
1928.

[10] B. Yin, S. Zhang, Y. Cheng, L. X. Cai, Z. Jiang, S. Zhou, and
Z. Niu, “Only those requested count: Proactive scheduling policies for
minimizing effective age-of-information,” in IEEE INFOCOM, April
2019.

[11] X. Guo, R. Singh, P. R. Kumar, and Z. Niu, “A risk-sensitive approach
for packet inter-delivery time optimization in networked cyber-physical
systems,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1976–1989, Aug.
2018.

[12] Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Can decentralized
status update achieve universally near-optimal age-of-information in
wireless multiaccess channels?” in International Teletraffic Congress
(ITC 30), Sep 2018.

[13] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Decen-
tralized status update for age-of-information optimization in wireless
multiaccess channels,” in IEEE Int’l Symp. Info. Theory, 2018.

[14] ——, “Timely status update in wireless uplinks: Analytical solutions
with asymptotic optimality,” IEEE Internet of Things Journal, 2018.

[15] Z. Jiang, S. Zhou, Z. Niu, and Y. Cheng, “A unified sampling and
scheduling approach for status update in wireless multiaccess networks,”
in IEEE INFOCOM, April 2019, pp. 1–9.

[16] Y. Gai, S. Ganesan, and B. Krishnamachari, “The saturation throughput
region of p-persistent CSMA,” in Information Theory and Applications
Workshop, Feb 2011, pp. 1–4.

[17] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length-based
CSMA/CA algorithms for achieving maximum throughput and low delay
in wireless networks,” IEEE/ACM Trans. Netw., vol. 20, no. 3, pp. 825–
836, Jun 2012.

[18] L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling, “Learning
to cooperate via policy search,” in Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 2000, pp. 489–496.

[19] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995, vol. 1.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[21] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in ICML, 2014.

2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)


