
Journal of Communications and Information Networks Research paper

Radio Resource Allocation for Bidirectional
Offloading in Space-Air-Ground Integrated

Vehicular Network
Guangchao Wang1, Sheng Zhou*1, Zhisheng Niu1

1. Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Abstract: Aerial platforms and edge servers have been recognized as two promising building blocks to improve the quality of

service (QoS) in space-air-ground integrated vehicular networks (SAGIN). Communication intensive tasks can be offloaded to

aerial platforms via broadcasting, while computation intensive tasks can be offloaded to ground edge servers. However, the key

issues including how to allocate radio resources and how to determine the task offloading strategy for the two types of tasks, are

yet to be solved. In this paper, the joint optimization of radio resource allocation and bidirectional offloading configuration is

investigated. To deal with the non-convex nature of the original problem, we decouple it into a two-step optimization problem.

In first step, we optimize the bidirectional offloading configuration in the case of the radio resource allocation is known in

advance, which is proved to be a convex optimization problem. In second step, we optimize the radio resource allocation

through brute-force search method. We use queuing theories to analyze the average delay of the two tasks with respect to the

broadcasting capacity and task arrival rate. The offloading strategies with closed-form expressions of communication intensive

tasks are proposed. We then propose a heuristic algorithm which is shown to perform better than interior point algorithm in

simulations. The numerical results also demonstrate that the aerial platforms and edge servers can significantly reduce the

average delay of the tasks under different network conditions.
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1 Introduction

In recent years, the intelligent vehicular networks have
been proposed to enhance the capabilities of information ex-
change and data processing for connected and automated ve-
hicles , which is an essential application scenario for future in-
telligent transportation systems (ITS) [1]. To improve the road
safety and traffic efficiency, a wide range of new applications
are emerging, such as high-definition (HD) map downloading,
collision avoidance, image-aided navigation, and etc. How-
ever, many communication-computation intensive tasks gen-
erated by these applications face challenges of processing and
transmitting the significant amount of data with stringent la-
tency requirements. For communications, the dedicated short
range communication (DSRC) and long-term evolution (LTE)

are two main supporting technologies in the state of the art of
vehicular networks [2], which face the issues of coverage and
capacity. For computations, although the aerial platforms and
the vehicles are expected to be equipped with on-board pro-
cessing units, it is still challenging to compute intensive tasks
that require real-time processing of huge amounts of sensing
data [4].

One feasible complementary solution is under develop-
ment, i.e. space-air-ground integrated networks (SAGIN),
which consists of satellites, aerial platforms and terrestrial net-
works [6-9]. The aerial platforms can be utilized as a base sta-
tion to support broadcast and multicast services, the feasibility
of which has been proved from the perspective of standardiza-
tion [10,11]. The aerial platforms are able to not only provide
large coverage and seamless connectivity, but also have higher
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probabilities of line of sight (LoS) connections compared with
terrestrial networks [12]. In this paper, we consider that the
aerial platforms work at broadcast mode, since the communi-
cation intensive tasks of vehicles are usually generated from
common interests, such as HD maps and infotainment con-
tents.

Furthermore, mobile edge computing (MEC) has been pro-
posed as a new paradigm shift to enhance vehicular computa-
tion services [3,5]. In the MEC architecture, The edge servers
are deployed at the edge of the radio access network, which
is close to the users and enables fast interactive response for
computation task offloading. Thus, aerial platforms and edge
servers are two essential building blocks to enhance the qual-
ity of services (QoS) of emerging vehicular applications.

In this paper, the differences between the space networks
and the air networks are not specified because both segments
have same features in our considerations, including large cov-
erage, broadcasting capabilities and scarce computation re-
sources. We consider an aerial platform-aided vehicular cloud
network, where the edge servers are deployed at the road side
units (RSUs). We focus on handling two types of tasks in the
network:

1. Communication intensive tasks: The tasks that require
high data rate transmission, such as HD map download-
ing and video streaming.

2. Computation intensive tasks: The tasks with high com-
putational complexity and require high speed process-
ing, such as computer vision-based navigation and self-
localization.

The communication intensive tasks of terrestrial networks can
be offloaded to the aerial platform via broadcasting, while the
computation intensive tasks generated by the aerial platforms
or the vehicles can be offloaded to the edge servers. The fea-
sibility and performance gain of this bidirectional offloading
has been validated in our previous work [8].

In this paper, two important problems are investigated to
improve the bidirectional offloading, (1) how to allocate ra-
dio resources of terrestrial networks to the two types of tasks,
i.e. radio resource allocation (RRA), since both the files
of communication intensive tasks and the feedback of com-
putation results need to be transmitted via unicasting, and
(2) how many communication intensive tasks and computa-
tion intensive tasks are supposed to be offloaded according
to the network status, i.e. bidirectional offloading configu-
ration (BOC). We consider a joint optimization of RRA and
BOC for communication-computation intensive tasks, which
is shown to be a non-convex optimization problem. Therefore
we decouple it into a two-step optimization problem. First,
we optimize the bidirectional offloading configuration given
the radio resource allocation. The closed-form expressions
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Figure 1 Aerial platform-aided vehicular network.

for task offloading configuration of communication intensive
tasks are derived. Then, we prove that the optimal resource
allocation can only be obtained at the boundary of the feasible
domain, which enables us to optimize the radio resource allo-
cation through brute force search under tolerable complexity.
Finally, we proposed a heuristic algorithm based on our anal-
ysis and obtain near-optimal solution. Extensive simulations
are conducted to validate the performance of the proposed al-
gorithm and demonstrate the performance gain of the bidirec-
tional offloading.

The rest of the paper is organized as follows. In section 2,
we provide the system model for the aerial platform-aided ve-
hicular network and queuing model for the two types of tasks.
In section 3, the problem formulation is introduced and the an-
alytical results are provided followed by a heuristic algorithm.
The numerical results are presented and discussed in section
4. Finally, the paper is concluded in section 5.

2 System Model
As shown in Fig. 1, we consider an aerial platform-aided

vehicular cloud network, which is a hybrid broadcast-unicast
system. We assume that both communication intensive tasks
and computation intensive tasks arrive following Poisson pro-
cess of rate λD and λR respectively. The vehicles are assumed
to be equipped with dual broadcast-unicast receiver. Thus, the
communication intensive tasks can be transmitted either via
the broadcast system or the unicast system. The broadcast en-
tity is the aerial platform, which stores the files of the commu-
nication intensive tasks over a large coverage area [13]. We as-
sume that the aerial platform forms multiple cells through ad-
vanced beamforming technologies [14] and can broadcast the
task files to all vehicles within its coverage [10]. The broad-
casting capacity is denoted by rH Mbps. The unicast entity is
the RSU, which stores the files of the communication inten-
sive tasks of its own service region. The unicasting capacity is
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denoted by rD Mbps. When a vehicle enters the service region
of the RSU, it can download the corresponding task files from
the RSU via unicasting, or it can download the task files from
the aerial platform via broadcasting.

The RSU also acts as an edge server. Therefore, the com-
putation intensive tasks of the vehicles can either be processed
locally using on-board computing resources, or be offloaded
to the RSU. If the task is offloaded to the RSU, the feedback
needs to be transmitted to the vehicles after processing. The
transmission capacity of the feedback is denoted by rR Mbps.
We assume that the processing time of both the local on-board
processing unit and the edge server follow exponential distri-
butions, with parameters µ

−1
L and µ

−1
R respectively.

In this model, the RSU plays two roles as the unicast entity
for the communication intensive tasks and the edge server for
the computation intensive tasks, respectively. Thus, the RSU
will manage two queues for the two types of tasks, respec-
tively.

We denote the average delay of the communication inten-
sive tasks by dD, which consists of the transmission delay and
the queuing delay. The communication intensive tasks are
generated when the vehicles enter the service region of the
RSU, the corresponding files should be downloaded from ei-
ther the aerial platform or the RSU. The file size is denoted by
LD. If the task is transmitted via broadcasting from the aerial
platform, the transmission delay is LD/rH . Since the aerial
platform forms multiple cells through beamforming, the vehi-
cles can obtain the task file without queuing. If the task file
is transmitted via unicasting from the RSU, the service pro-
cedure can be modeled as an M/D/1 queue with service rate
rD/LD. We denote the probability that the communication in-
tensive task is transmitted via broadcasting by x. Thus, the
arrival rate of the communication intensive tasks for the RSU
is (1− x)λD. We then obtain the average delay of communi-
cation intensive tasks by

dD =
LDx
rH

+
LD(1− x)

rD
+

λDL2
D(1− x)2

2(r2
D− (1− x)λDLDrD)

. (1)

The first term is the transmission delay via broadcasting. The
sum of the second term and the third term is the sojourn time
of the M/D/1 queue [15], where the second term is the trans-
mission delay via unicasting and the last term is the waiting
delay.

We denote the average delay of the computation intensive
tasks by dR, which consists of the transmission delay, the pro-
cessing delay and the queuing delay. If the task is processed
locally, then the average processing delay is µ

−1
L . If the task

is offloaded to the RSU, the average delay is composed of up-
loading delay of the task file and the service delay in RSU.
As the uploading procedure is not our main focus, we assume
that the uploading delay is a constant, denoted by dup. The

service for computation intensive tasks in RSU consists of the
processing of the tasks and the transmission of the feedback,
which can be modeled as an M/G/1 queue. We denote the file
size of the result feedback by LR and the probability that the
computation intensive task is processed locally by y. Thus,
the arrival rate of the computation intensive tasks for the RSU
is (1−y)λR. According to Pollaczek-Khinchine formula [15],
the average delay of computation intensive tasks is

dR = µ
−1
L y+dup(1− y)+µ

−1
R (1− y)+

LR(1− y)
rR

+
(1− y)2λR(2r2

R +2LRµRrR +L2
Rµ2

R)

2µR((µR− (1− y)λR)r2
R− (1− y)λRLRµRrR)

.

(2)

The first term is the local processing delay. The second term
is the uploading delay of the task file. The remaining part
of the equation is the sojourn time of the M/G/1 queue [15],
where the third term is the processing delay via offloading, the
fourth term is the transmission delay of the feedback and the
last term is the waiting delay.

3 Problem Formulation and Solution
Our goal is to minimize the weighted sum of the average

delay of the two types of tasks. The radio resource of the
RSU is limited, the total capacity of which is denoted by CR.
The radio resource needs to be allocated to the unicast trans-
mission of communication intensive tasks and the feedback
transmission of computation intensive tasks, respectively. The
offloading probability also needs to be properly configured for
the two types of tasks. The problem is how to find the opti-
mal allocation of the radio resource to the two types of tasks
as well as the optimal configuration of both communication
offloading and computation offloading. Then, the joint opti-
mization problem can be expressed as

P1 : min
x,y,rD,rR

dD +ωdR,

s.t. C1 :rD + rR ≤CR,

C2 :(1− x)λD−
rD

LD
≤ 0,

C3 :(1− y)λR−
µRrR

µRLR + rR
≤ 0,

C4 :x,y ∈ [0,1],

(3)

where ω is the weight indicating the importance of dR com-
pared with dD. The constraint C1 indicates that the sum of the
radio resources that allocated to the two types of tasks can not
exceed the resource capacity of the RSU. The constraints C2
and C3 guarantee the stability of two queues in RSU. P1 is
a non-convex optimization problem due to the non-convexity
of the objective function, which is hard to solve even numeri-
cally. We consider to decouple this joint optimization problem
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into a two-step optimization problem. In the first step, we op-
timize the task offloading configuration under the condition
that the allocation of the radio resources is given. In the sec-
ond step, we consider how to allocate the radio resources and
propose a heuristic algorithm to obtain near-optimal solution.

Given rD and rR, we can decouple P1 into P2 and P3 as

P2 :min
x

dD,

s.t. (1− x)λD−
rD

LD
≤ 0,

x ∈ [0,1].

P3 :min
y

dR,

s.t. (1− y)λR−
µRrR

µRLR + rR
≤ 0,

y ∈ [0,1].

(4)

For P2 and P3, we have a lemma as follows:

Lemma 1 P2 and P3 are convex optimization problems.

Proof See appendix A.
Then, P2 and P3 can be solved in polynomial time us-

ing existing algorithms, such as interior point algorithm [16].
Furthermore, by solving P2, we can derive the closed-form
expression of the communication offloading probability x, as
follows:

Theorem 1 When λDLD
rD

> 1, indicating that the terrestrial
network is congested. Then the aerial platform is necessary,
and we have

x =

{
1, rH ≥ rD,

xon, rH < rD.
(5)

When λDLD
rD
≤ 1, indicating that the terrestrial network is not

congested. Then the aerial platform is used only when the
broadcasting capacity is larger than a threshold rH,on, and we
have

x =


1, rH ≥ rD,

xon, rH,on < rH < rD,

0, rH ≤ rH,on,

(6)

where

xon =
(λDLD− rD)(2rD− rH)+ rD

√
(2rD− rH)rH

λDLD(2rD− rH)
. (7)

The threshold is given by

rH,on =
2rD(rD−λDLD)

2

r2
D +(rD−λDLD)2 . (8)

Proof See appendix B.
In next step, we consider how to allocate the radio resource

to the two types of tasks. We have a lemma as follows:

Lemma 2 The average delay for communication intensive
tasks dD is monotonically decreasing with rD, and the aver-
age delay for computation intensive tasks dR is monotonically
decreasing with rR.
Proof See appendix C.

We denote the the minimum sum average delay of the two
types of tasks by dopt. Then, we have a proposition as follows:
Theorem 2 dopt is obtained only when rD + rR =CR.
Proof See appendix D.

According to lemma 1 and theorem 1, we can obtain op-
timal task offloading configuration in polynomial time if the
radio resource allocation is given. Theorem 2 indicates that
the optimal radio resource allocation can only be obtained at
the boundary of the feasible domain. Thus we can optimize
the radio resource allocation based on brute-force search un-
der tolerable complexity. Then, we propose a heuristic algo-
rithm based on our analysis to jointly solve the radio resource
allocation and task offloading configuration and obtain near-
optimal solution as Algorithm 1.

Algorithm 1 Heuristic algorithm for RRA & BOC

1: Initialization: rD =∆r and rR =CR−∆r, set dopt to a large
number

2: while rD <CR do
3: obtain dmin = min

x
dD +min

y
dR and corresponding x,y

by solving P2 and P3
4: if dopt > dmin then
5:

dopt = dmin,xopt = x,yopt = y,

rD,opt = rD,rR,opt = rR

6: end if
7: rD = rD +∆r, rR = rR−∆r
8: end while
9: return dopt,xopt,yopt,rD,opt,rR,opt

The proposed heuristic algorithm can be divided into two
steps. First, we initialize the resource allocation scheme, and
the optimal bidirectional offloading configuration is obtained
by solving P2 with Proposition 2 and solving P3 with interior
point algorithm. Then, the optimal radio resource allocation
is searched by brute force search. The performance of the
algorithm highly depends on the resource searching step ∆r.
If ∆r is small, we can get better results at the expense of longer
computing time. If ∆r is large, the algorithm will run fast but
the results are worse.

4 Numerical Results
In this section, the performance of the proposed heuristic

algorithm is evaluated. The weight ω is set as 1 and other
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Table 1 Simulation Parameters

Parameter Value Description

{LD,LR} {2,0.128}Mbit File size

{λD,λR} {20,20} tasks/s Task arrival rate

{µL,µR} {5,20} tasks/s Processing rate

dup 10 ms Uploading delay

CR 60 Mbps Radio resource capacity

rH 20 Mbps Broadcasting capacity

∆r 0.5 Mbps Searching step
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Figure 2 Average delay versus broadcasting capacity.

basic simulation parameters are listed in Table 1.
Fig. 2 shows the delay performance of the proposed al-

gorithm compared with that of the interior point algorithm
versus the broadcast capacity. The results of the network
without aerial platform, the network without edge server and
the network without both aerial platform and edge server are
presented as benchmarks. Note that the proposed algorithm
achieve better performance than interior point algorithm in
some cases. This is because that the interior point algorithm
can only obtain local optimal solution for non-convex opti-
mization problems, the performance of which can not be guar-
anteed due to the uncertainty of the initial point selection.
However, the result of our proposed algorithm can gradually
approach the optimal solution as ∆r decreases. The results
also indicate that both aerial platform and edge server are nec-
essary to decrease the average delay of the two types of tasks.

The contributions of the aerial platform and the edge server
under different levels of network congestions are validated in
Fig. 3. For simplification, we set λD and λR to the same value
λ . We can see that, the network with both aerial platform and
edge server always have best delay performance. When the
network is not congested, the network without edge server has
very long delay due to higher local processing delay. How-
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Figure 3 Average delay versus task arrival rate.
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Figure 4 Communication offloading probability versus task arrival rate.
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Figure 5 Local processing probability versus task arrival rate.

ever, the gap decreases as λ increases. This is because when
the network is congested, more radio resources are allocated
to the communication intensive tasks to guarantee the queuing
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Figure 6 Tradeoff between broadcast resources and unicast resources.

stability and more computation intensive tasks have to be pro-
cessed locally. On the other hand, under non-congested case,
the network without aerial platform has good delay perfor-
mance. This is because the radio resource of the RSU is rich
enough to handle the two types of tasks and the aerial plat-
form is not used. However, the gap increases as λ increases,
because more communication intensive tasks are offloaded to
the aerial platform to relief the burden of the RSU. But for
the network without aerial platform, the communication tasks
have to be transmitted via unicasting and the queuing delay
increases as λ increases. As shown in Fig. 4, the communi-
cation offloading probability increases as λ increases. More-
over, the network with both edge server and aerial platform
has higher communication offloading probability than the net-
work without edge server. This is because higher commu-
nication offloading probability indicates that more radio re-
sources of the RSU are allocated to the computation intensive
tasks. As shown in Fig. 5, the local processing probability
also increases as λ increases. Furthermore, the network with
both edge server and aerial platform has lower local process-
ing probability than the network without aerial platform. This
is because more radio resources are left for the computation
offloading due to the communication offloading.

Fig. 6 shows the tradeoff between broadcast resources and
unicast resources. As can be seen, the delay performance de-
creases as broadcast capacity increases. Moreover, when the
unicast resources are tight or when the delay requirement is
high, a small amount of broadcast resources can trade for a
large amount of unicast resources. On the other hand, when
the unicast resources are rich or when the delay requirement is
low, a small amount of unicast resources can trade for a large
amount of broadcast resources. Fig. 7 and Fig. 8 show that
both communication and computation offloading probabili-
ties increase as broadcast capacity increases. We can observe
that communication offloading probability is large when CR is
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Figure 7 Communication offloading probability versus broadcasting capac-
ity.
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Figure 8 Computation offloading probability versus broadcasting capacity.

small, indicating that more communication intensive tasks are
tend to be offloaded to aerial platforms if the radio resource
of terrestrial network is scarce. When CR is large, more com-
putation intensive tasks are offloaded to the edge servers if
broadcast resources are rich, otherwise the tasks are preferred
to be processed locally.

5 Conclusion

In this paper, we consider the joint optimization of RRA
and BOC for communication-computation intensive tasks in
an aerial platform-aided vehicular cloud network. The prob-
lem is hard to be solved directly because of the non-convex
nature of the objective function. The analytical results in-
dicate that the aerial platform is necessary when the ter-
restrial network is congested, otherwise aerial platform is
helpful only when its broadcast capacity is larger than a
threshold. A heuristic algorithm is proposed to obtain near-
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optimal solution based on the analytical results, which is
shown to have good performance. The simulations also val-
idate the performance gain of bidirectional offloading for
communication-computation intensive tasks in vehicular net-
works, and demonstrate the tradeoff between broadcast re-
sources and unicast resources.

Appendix

A) For P2, taking the second-order derivative of dD with re-
spect to x, we have

∂ 2dD

∂x2 =
λDL2

DrD

[rD− (1− x)λDLD]3
. (9)

According to the constraints of P2, we have (1−x)λD− rD
LD
≤

0, which is equivalent to

rD− (1− x)λDLD ≥ 0. (10)

Since the numerator of equation (9) is nonnegative, we have
∂ 2dD
∂x2 ≥ 0. According to [16], the objective function of P2 is a

convex function. As all constraints are linear constraints, P2
is proved to be a convex optimization problem.

Similarly, taking the second-order derivative of dR with re-
spect to y, we have

∂ 2dR

∂y2 =
λRµRrR(2r2

R +2LRµRrR +L2
Rµ2

R)

[µRrR− (1− y)λR(rR +LRµR)]3
. (11)

According to the constraints of P3, we have (1− y)λR −
µRrR

µRLR+rR
≤ 0, which is equivalent to

µRrR− (1− y)λR(rR +LRµR)≥ 0. (12)

The numerator of equation (11) is also nonnegative, thus we
have ∂ 2dR

∂y2 ≥ 0. Then, the objective function of P3 is also con-
vex. Since all constraints are linear constraints, P3 is proved
to be a convex optimization problem. Lemma 1 is proved.
B) The Lagrangian function of P2 is

L(x,ν) =
LDx
rH

+
LD(1− x)

rD
+

λDL2
D(1− x)2

2(r2
D− (1− x)λDLDrD)

+ν1

[
(1− x)λD−

rD

LD

]
−ν2x+ν3(x−1),

(13)

where ν = [ν1,ν2,ν3] are the Lagrange multipliers. Since the
constraints are all linear inequalities, the Slater’s condition
holds. Therefore strong duality holds for the prime problem
and dual problem. According to lemma 1, let x?,ν? are primal
and dual optimal points, then the Karush-Kuhn-Tucker (KKT)

conditions must be satisfied [16]

(1− x?)λD−
rD

LD
≤ 0, −x? ≤ 0, x?−1≤ 0,

ν
?
1 ≥ 0, ν

?
2 ≥ 0, ν

?
3 ≥ 0,

ν
?
1

[
(1− x?)λD−

rD

LD

]
= 0, ν

?
2 x? = 0, ν

?
3 (x

?−1),

λDL2
D(1− x)

λDLDrD(1− x)− r2
D
− λ 2

DL3
DrD(1− x)2

2[λDLDrD(1− x)− r2
D]

2

+
LD

rH
− LD

rD
−ν

?
1 λD−ν

?
2 +ν

?
3 = 0.

(14)

(1) When λDLD
rD

> 1, we have 1≥ x? ≥ 1− rD
LDλD

> 0. Thus

ν?
2 = 0. Let x? = 1, we have ν?

1 = 0 and LD
rH
− LD

rD
+ ν?

3 = 0.
Then we have ν?

3 = LD
rD
− LD

rH
≥ 0. Therefore rH ≥ rD must be

satisfied. Let x? < 1, we have ν?
3 = 0. Then we can eliminate

ν?
1 and obtain

(2rD− rH)L2
Dλ

2
D(1− x?)2−2LDλDrD(2rD− rH)(1− x?)

−2(rH − rD)r2
D = 0

(15)
Since we should guarantee that the quadratic equation (15) has
feasible point with x ∈ (1− rD

LDλD
,1), we can derive that

x? =
(λDLD− rD)(2rD− rH)+ rD

√
(2rD− rH)rH

λDLD(2rD− rH)
, xon,

(16)
when rH < rD.

(2) When λDLD
rD
≤ 1, we have 0 ≤ x? ≤ 1. Let x? = 0, we

have ν?
1 = 0 and ν?

3 = 0. Then we have

ν
?
2 =

λDL2
D(1− x)

λDLDrD(1− x)− r2
D
− λ 2

DL3
DrD(1− x)2

2[λDLDrD(1− x)− r2
D]

2

+
LD

rH
− LD

rD
≥ 0

(17)

Therefore we can obtain

rH ≤
2rD(rD−λDLD)

2

r2
D +(rD−λDLD)2 , rH,on. (18)

Let 0 < x? < 1, we have ν?
2 = 0 and ν?

3 = 0. By eliminating
ν?

1 we can also obtain equation (15). We should guarantee that
the quadratic equation (15) has feasible point with x ∈ (0,1).
Then we can derive that x? = xon, when rH,on < rH < rD. Let
x? = 1, we have ν?

1 = 0 and ν?
2 = 0. Then we have ν?

3 =
LD
rD
− LD

rH
≥ 0. Therefore we obtain rH ≥ rD. Theorem 1 is

proved.
C) Taking the derivative of dD with respect to rD, we have

∂dD

∂ rD
=−LD(1− x)

r2
D

− λDL2
D(1− x)2(2r−λDLD(1− x))
2r2

D[rD−λDLD(1− x)]2
.

(19)
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According to the equation (10), we have ∂dD
∂ rD
≤ 0. Thus dD is

monotonically decreasing with rD when x is given.
Similarly, taking the derivative of dR with respect to rR, we

have

∂dR

∂ rR
=−LR(1− y)

r2
R

− λRLRµR(1− y)2{2r2
R +LR[µR− (1− y)λR]+LRΦ}

2r2
RΦ2 ,

(20)

where

Φ = [µR− (1− y)λR]rR− (1− y)λRLRµR. (21)

According to the constraints C3 in P1, we have

(1− y)λR ≤
µRrR

µRLR + rR
≤ µR, (22)

which is equivalent to Φ≥ 0 and µR−(1−y)λR ≥ 0. Thus we
have ∂dR

∂ rR
≤ 0, indicating that dR is monotonically decreasing

with rR when y is given.
Given rD1 and rD2, we assume minimum dD are obtained

with x1 and x2 respectively. Let rD1 < rD2, we have

dD(rD1,x1)≤ dD(rD2,x1)< dD(rD2,x2). (23)

Therefore, dD is monotonically decreasing with rD. Similarly,
we can prove dR is monotonically decreasing with rR. Lemma
2 is proved.
D) Assume that dopt = dD+ωdR is obtained when rD+rR <

CR. Then we have rD + rR + ∆r = CR, where ∆r > 0. Let
r∗D = rD +∆r > rD, according to lemma 2, we have dD(r∗D)<
dD(rD). Thus d∗opt = dD(r∗D)+ωdR < dopt, which is conflict
with the assumption. Therefore dopt is obtained only when
rD + rR =CR. Theorem 2 is proved.
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