
49IEEE Communications Magazine • May 2019 0163-6804/19/$25.00 © 2019 IEEE

Abstract

Future vehicles will have rich computing 
resources to support autonomous driving and be 
connected by wireless technologies. Vehicular fog 
networks (VeFNs) have thus emerged to enable 
computing resource sharing via computation task 
offloading, providing a wide range of fog applica-
tions. However, the high mobility of vehicles makes 
it hard to guarantee the delay that accounts for 
both communication and computation throughout 
the whole task offloading procedure. In this article, 
we first review the state of the art of task offload-
ing in VeFNs, and argue that mobility is not only 
an obstacle for timely computing in VeFNs, but 
can also benefit the delay performance. We then 
identify machine learning and coded computing as 
key enabling technologies to address and exploit 
mobility in VeFNs. Case studies are provided to 
illustrate how to adapt learning algorithms to suit 
the dynamic environment in VeFNs, and how to 
exploit the mobility with opportunistic computation 
offloading and task replication.

Introduction
To satisfy the emerging need for autonomous 
driving, future vehicles will not only have rich 
onboard sensors like cameras and radars, but also 
be equipped with strong computing power to 
process the sensing data and make driving deci-
sions. In addition, due to recent fatal accidents 
with standalone autonomous driving, it becomes 
evident that safe and reliable autonomous driv-
ing requires effective interaction and collabo-
ration between vehicles, and between vehicles 
and roadside units (RSUs). Wireless technologies 
enable vehicle-to-vehicle (V2V) and vehicle-to-in-
frastructure (V2I) communications that deliver 
critical information, such as safety warnings and 
road conditions. Accordingly, vehicles can extend 
their sensing capability to reach blind spots, and 
can also jointly process the sensing data and 
coordinate their driving decisions. The result can 
be precise recognition of the environment and 
robust control of vehicles, leading to safer autono-
mous driving and more efficient road traffic.

The large number of connected vehicles, each 
endowed with server-level computing power, 
form a network with an abundant amount of 
moving intelligence. Vehicles can contribute their 

computing resources, acting like fog nodes in 
the context of fog computing [1], and thus the 
whole network can be regarded as a vehicular 
fog network (VeFN). The VeFN can provide a 
wide range of applications beyond autonomous 
driving. For instance, passengers can utilize the 
excessive computing power on their own vehi-
cle or neighboring vehicles for computation task 
offloading, overcoming the device limitations as 
in mobile edge computing (MEC) where comput-
ing resources are co-located with base stations 
(BSs) [2]. Pedestrians can also access the VeFN 
via RSUs. To this end, the VeFN combines the 
concepts of fog as a service [3] and vehicle as 
infrastructure [1], and is promising in the era of 
artificial intelligence (AI), which calls for comput-
ing anytime and everywhere.

For autonomous driving and other computa-
tion offloading applications, delay, accounting for 
both computing and transmission, is always the 
most demanding quality of service (QoS) require-
ment. In vehicular networks, the high mobility 
of vehicles and the ad hoc nature of networking 
make timely communication and computing quite 
challenging. Despite the existing research efforts 
on delay optimized ultra reliable V2V commu-
nications [4], the coupled communication and 
computing delays in task offloading are affected 
by more random factors, which is challenging to 
optimize. High mobility introduces difficulties in 
jointly adapting wireless and computing resources 
with respect to the time varying system condi-
tions. Moreover, the adaptation requires fresh sys-
tem state information of channels and computing 
power, which is unfortunately hard to obtain.

Nevertheless, mobility is not always an obsta-
cle. As shown in the premier work by Grossglaus-
er and Tse, mobility can increase the capacity 
of wireless ad hoc networks by increasing the 
probability of making contacts between nodes 
[5]. Moreover as shown in [6, 7], mobility can 
increase the successful downloading probabili-
ty of files in caching systems, with more chanc-
es for end users to experience good channels 
and file holders. We believe that mobility is also 
beneficial to the task offloading in the VeFN. For 
example, the probability that vehicles with exces-
sive computing resources appear in the vicinity 
of an end user can increase with the speed of 
vehicles [8]. In this context, how to guarantee 
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offloading delay while at the same time exploit-
ing the diversity brought by mobility becomes an 
intriguing research issue.

In this article, we first introduce the VeFN con-
cept with the corresponding delay requirement, 
and review the state of the art for cloud comput-
ing under dynamic conditions in vehicular net-
works. We propose the VeFN architecture with 
three major offloading modes in the next section, 
and analyze the advantages and challenges of 
these modes. We then discuss why mobility is 
both a foe and a friend of computation offloading 
in the VeFN, and propose two key solutions, that 
is, learning while offloading and coded comput-
ing, to optimize the offloading delay. We carry 
out two case studies that address and exploit the 
mobility in VeFNs, respectively. In the first case 
study, the existing learning algorithms are revisited 
and modified so that they can adapt to the vary-
ing network topologies and workloads. Coded 
computing is combined with learning techniques 
to further improve the service reliability. In the 
second case study, the optimal task replication 
policy is derived, providing insights that balanced 
assignment optimizes the delay performance. 
Finally we conclude the article with an outlook on 
future research directions.

Vehicular Fog Networks:  
Architecture and State of the Art

The VeFN integrates the computing resources 
of vehicles and RSUs, and provides diverse fog 
computing services and applications for vehicles 
and mobile users. As shown in Fig. 1, RSUs and 
vehicles (moving and parked), which can provide 

computing resources, are regarded as fog nodes. 
Computation tasks with different workloads and 
delay requirements are generated by the client 
nodes, including vehicles requiring excessive com-
puting support, onboard user equipments (UEs), 
pedestrians, and so on. These tasks are offloaded 
from the client nodes to the VeFN for process-
ing. Note that each vehicle can act as either a fog 
node or a client node, denoted by fog vehicle and 
client vehicle, respectively. The role of each vehi-
cle can change over time, depending on whether 
it has surplus computing resources to contribute 
to the network, or whether it requires support 
from other nodes for task offloading.

Some typical applications in VeFNs and their 
corresponding delay requirements are summa-
rized in Table 1, where the data is from [2] and 
Third Generation Partnership Project (3GPP) TR 
22.886 [9]. The key performance metric of task 
offloading is delay, consisting of three parts [2]: 
uploading delay related to the input data size of a 
task that needs to be processed, computing delay 
at the fog node, which is related to the compu-
tational complexity and the input data size, and 
downloading delay related to the output data 
size. All these delays are affected by the commu-
nication bandwidth used to transmit the data, and 
the computing power to process the task at the 
fog nodes. For delay-critical applications, the hard 
delay bound represents the longest allowable 
delay that cannot be violated. For delay-tolerant 
applications, tasks do not have an exact deadline, 
but timely feedback is still favorable. Such appli-
cations include traffic flow optimization, entertain-
ment, and Internet of Things (IoT) applications, 
and average offloading delay can be used as the 
performance metric.

Architecture and Offloading Modes in VeFNs

The scattered computing resources in the VeFN 
bring a variety of offloading routes to the VeFN. 
To support data transmission between client 
nodes and fog nodes, multiple communica-
tion techniques are jointly used, including IEEE 
802.11p-based dedicated short-range commu-
nications (DSRC) and LTE-V, which enable vehi-
cle-to-everything (V2X) communications such as 
V2V, V2I, and vehicle-to-pedestrian (V2P) com-
munications. Pedestrians get access to the RSUs 
through 3G or 4G LTE, and onboard UEs can off-
load tasks to the vehicle on which they ride via 
Bluetooth. As shown in Fig. 1, the computation 
task offloading in the VeFN is classified into three 
major modes.

Vehicle-Vehicle Offloading: Vehicles can 
directly offload their tasks (including the tasks off-
loaded by their passenger UEs) to neighboring 
fog vehicles. In this case, each client vehicle first 
discovers the available fog vehicles in its commu-
nication range. To keep a relatively long contact 
time, the moving directions and velocities should 
be considered, which can be acquired by V2X 
communication protocols. Multiple fog vehicles 
may be available at the same time. Offloading 
decisions about which fog vehicles to select are 
made by client vehicles independently in a dis-
tributed manner, since it is difficult to acquire 
global information about the vicinity, and there 
might not be a centralized entity to make such 
decisions.

Figure 1. Illustration of task offloading in the VeFN.

Table 1. Typical applications in VeFNs and the corresponding delay require-
ments.

Application Type Delay requirements

Cooperative collision avoidance Safety Delay bound, 10 ms

Vehicle platooning Safety Delay bound, 25 ms

Collective perception of environment Safety Delay bound, 500 ms

Vehicle scheduling Non-safety Average delay, 1 s

Virtual reality and augmented reality Entertainment Delay bound, 10 ms

Cloud gaming Entertainment Average delay, 100 ms~1 s

Road monitoring and flow optimization IoT Average delay, seconds~minutes
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Vehicle-RSU-Vehicle Offloading: When the 
surrounding fog vehicles cannot satisfy the com-
puting needs of client vehicles, tasks are offload-
ed to nearby RSUs. RSUs may compute the tasks 
by their own computing resources, or further 
assign the tasks to other fog vehicles without 
direct wireless connection to the client vehi-
cles. RSUs are able to master more information 
about communication bandwidth and comput-
ing resources. Hence, centralized task assign-
ment can optimize the utilization of computing 
resources and the QoS. Computing results are 
finally transmitted back to the client vehicle via 
its associated RSU.

Pedestrian-RSU-Vehicle Offloading: The con-
tact durations of pedestrians and vehicles are 
often very short, and the connectivities are quite 
unstable. Therefore, in VeFNs, RSUs can first col-
lect the computation tasks from pedestrians. Then 
the tasks are handled by themselves or offloaded 
to fog vehicles. The computing results can be fed 
back by a fog vehicle to its nearby RSU, and then 
delivered back to the original RSU via the back-
haul if the fog vehicle has already moved away 
from the original RSU.

State of the Art on Computing in  
Vehicular Networks

There are some recent efforts focusing on 
the resource management of communication 
and computation in the context of VeFNs. 
Researchers start by evaluating the feasibility 
of employing vehicles as fog nodes. Hou et al. 
[1] analyzed communication and computing 
capacity of vehicles using real traces of vehi-
cles in Beijing and Shanghai. Simulation results 
show that the communication and computing 
resources of both parked and moving vehicles 
have great potential to enhance the static fog 
computing network.

For flexible computing resource management, 
a software-defined vehicular network architecture 
was proposed by Choo et al. [10] in which a cen-
tralized vehicular cloud (VC) controller periodical-
ly collects the mobility and resource status of fog 
vehicles, estimates their instantaneous locations 
and computation loads upon task requests, and 
allocates the computing and bandwidth resourc-
es for each task. In terms of resource allocation 
schemes, Zheng et al. [11] considered a dynamic 
VC consisting of moving vehicles. The arrival and 
departure of vehicles follow the Poisson process, 
and each vehicle is equipped with equal com-
puting power. Tasks are collected by a central 
controller, and assigned to fog vehicles to maxi-
mize the average utility related to delay, energy 
consumption, and resource occupation. Howev-
er, the basis of adopting centralized schemes is 
holding the instantaneous state information of the 
whole system, which may lead to high signaling 
overhead, and is thus hard to implement in real 
systems.

Task offloading decisions can also be made 
by each client node independently in a distrib-
uted manner, corresponding to the vehicle-vehi-
cle offloading mode. Feng et al. [12] proposed 
a distributed VeFN architecture where RSUs 
and vehicles can offload tasks to their neigh-
boring nodes based on their distributed deci-
sions. They designed a task offloading algorithm 

based on ant colony optimization in order to 
maximize the sum utility of offloaded tasks relat-
ed to delay, and evaluated it in a system-level 
simulator using real traces. However, the RSUs 
and vehicles are treated equally in [12], while 
in real systems, RSUs often know more about 
the network conditions, which should be more 
effectively exploited.

Mobility: Foe and Friend for the 
Offloading Delay

The mobility of vehicles makes the VeFN highly 
dynamic and volatile, which brings both challeng-
es and opportunities for computation task offload-
ing. In this section, we interpret the intuition on 
why mobility acts as both a foe and a friend for 
timely computing, and identify potential ways to 
address and exploit the mobility.

Mobility as a Foe

Mobility brings more randomness and uncertain-
ties to the delay performance of the offloaded 
tasks. First, the VeFN can be viewed as an inter-
mittently connected wireless network, in the 
sense that the network topology changes over 
time, and connection durations of V2X, includ-
ing V2V, V2I, and V2P, are quite limited. This 
inherently stems from the physical limitations of 
the range of wireless communications and the 
high mobility of vehicles, and significantly limits 
the effectiveness of a VeFN. Second, the wireless 
channel states and thus the interference between 
V2X vary fast across time, depending on many 
factors such as relative speed, neighboring vehi-
cles’ transmit power, and surrounding scatters, 
and they are hard to model or predict. Third, simi-
lar to the MEC systems, the computation tasks are 
generated randomly with different delay require-
ments and workloads, and the computing power 
of RSUs and vehicles varies, producing highly 
dynamic and non-uniform computation loads. 
These factors bring challenges to collect informa-
tion and to make optimal offloading decisions and 
resource allocation in a timely manner, which is 
critical for those safety-related applications with 
hard delay bounds.

Mobility as a Friend

However, the limitation due to intermittent con-
nectivity, somewhat surprisingly, can be over-
come by vehicle mobility. This can be illustrated 
by the following three factors.

Mobility Increases the Probability of Making 
Contact: As shown by several existing works such 
as [5], the mobility of nodes in an intermittently 
connected network can be beneficial since mobil-
ity creates more chances of contacts between 
nodes, and thus the probability of communica-
tion and task offloading between the nodes also 
increases.

Mobility Decreases Contact Time Interval: 
Many VeFN applications rely on consecutive 
contacts between V2V and V2I, such that the 
inputs and outputs of tasks can be communicat-
ed separately. Therefore, the offloading delay is 
related to the contact time interval significantly. 
In this regard, vehicle mobility decreases the 
time interval and hence reduces the offloading 
delay.

Mobility brings more 
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Predictable Mobility: Despite the high mobility 
of vehicles, their trajectories are limited to roads, 
and their speeds are highly related to the traffic 
conditions. Thus, one can predict the mobility of 
vehicles to a certain extent and carry out predic-
tion-based task offloading.

Address and Exploit Mobility

To release the aforementioned potentials brought 
by mobility while reducing the time overhead for 
information collection and online decisions, we 
resort to machine learning approaches to track 
the system dynamics. Moreover, we identify a set 
of solutions that falls into the concept of coded 
computing, which can enhance the reliability of 
computing with efficient resource utilization.

Learning While Offloading: Because both 
communication and computation environments 
depend on many factors and vary fast in VeFNs, 
the offloading delay is very complex to model and 
predict, especially for distributed task offloading. 
Instead of acquiring all the related state informa-
tion to infer the offloading delay of candidate fog 
nodes before making the offloading decision, cli-
ent nodes can try different candidates by offload-
ing several tasks and observing the delay on the 
go. In other words, the environment is learned 
while tasks are being offloaded. Such learning 
algorithms should have low complexity and fast 
convergence to track the dynamic environment. 
They should also effectively balance the so-called 
exploration-exploitation trade-off: to explore more 
and get more accurate estimations about candi-
date fog vehicles, or to select the empirically best 
fog vehicle, hoping to minimize the instantaneous 
offloading delay. In the context of learning, the 
objective is to minimize the regret, that is, the per-
formance loss of learning algorithms compared to 
the genie-aided optimal solution.

Multi-armed bandit (MAB) [13] is a promising 
method to perform learning on the go. In classical 
MAB, a decision maker faces a fixed number of 
candidate actions, whose rewards are governed 
by different distributions that are unknown a prio-
ri. The decision maker tries one action at a time, 
observes the reward, and gradually learns the per-
formance of different candidates while minimizing 
the regret.

However, existing MAB algorithms cannot be 
applied in VeFNs directly because the network 
topologies are not fixed, with neighboring fog 
vehicles coming and leaving unexpectedly. In 
addition, the workloads of tasks vary over time, 
but such variations have not been considered 
in existing MAB problems. We revise the MAB-
based learning algorithm to address the dynamic 
topology and task workloads in V2V offloading, 
which is illustrated in the first case study.

To exploit the mobility, supervised learning 
methods can also be adopted to learn the mobil-
ity of vehicles and predict their speeds and tra-
jectories. Then both computing and bandwidth 
resources of fog vehicles can be better allocated. 
For example, vehicles can predict which neigh-
boring vehicles may have longer contact dura-
tion, and RSUs can forecast the occurrence of 
handover and proactively fetch the computing 
data or migrate some computing services of client 
vehicles.

Coded Computing: As a foe, mobility makes 
the computing services at each fog node unre-
li able. But as a friend, mobility also brings 
opportunities for client nodes to meet more 
fog nodes. Equivalently, the computing resourc-
es of the VeFN become richer. To exchange 
the redundancy of computing resources for 
reliability, coded computing serves as an effi-
cient tool. Consider an (n, m) maximum dis-
tance separable (MDS) coding scheme. If n fog 
nodes can provide computing services for a 
client node, a task can be decomposed into m 
subtasks with m ≤ n using the minimum latency 
coding technique [14], encoded into n coded 
tasks, and then offloaded to these n fog nodes. 
Once the earliest m computing results are suc-
cessfully delivered back, the task is completed. 
An example of coded computing in a VeFN is 
shown in Fig. 2. Three fog nodes (two fog vehi-
cles and one RSU) can serve the client vehi-
cle. The input data of a matrix multiplication 
task is decomposed as two submatrices, and 
encoded to be three subtasks. The original task 
is successfully computed if two of the three fog 
nodes complete their subtasks. As a result, fog 
nodes can cooperate with each other to bet-
ter utilize their computing resources, and the 
uncertainties brought by mobility, such as inter-
mittent connectivity, can be addressed. Coded 
computing can also be applied to share the 
computing resources of fog nodes for multiple 
client vehicles.

Coded computing can actually cover a 
large variety of mappings between computing 
resources and tasks, among which a special 
case is task replication, using the simplest rep-
etition coding. Each task is directly offloaded 
to multiple fog nodes simultaneously and pro-
cessed independently. If one of the selected 
fog nodes completes the task before the dead-
line, it is successfully executed. It is crucial to 
balance the reliability gain with more replica-
tions and the resource occupation alongside, 
and the offloading opportunities require non-
trivial allocation among multiple clients. Our 
key contribution is that we derive the optimal 
task replication decisions for multiple clients in 
a VeFN in the second case study, providing the 
insight that balanced task assignment optimizes 
the delay performance. We also discuss how 
to combine MAB and coded computing in the 
first case study, and show the performance gain 
through coding.

Case Studies
In this section, we carry out two case studies that 
apply the aforementioned learning and coded 
computing methods, proving their great potential 
for timely computing in VeFN.

Figure 2. Illustration of coded computing and task replication in a VeFN.
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Learning-Based Task Offloading in VeFN
To guide the task offloading in VeFN by using 
learning-based methods, we first focus on a dis-
tributed scenario with V2V offloading. Consider a 
client vehicle of interest who generates computa-
tion tasks in sequence, and it makes the offload-
ing decisions on which fog vehicle to handle each 
task to minimize the average offloading delay.

It is difficult for each client vehicle to acquire 
the information about available computing 
resources and channel states for its own tasks; 
thus, it has no idea which fog vehicle performs 
best when making task offloading decisions. It has 
to learn the average delay of each candidate fog 
vehicle based on observations of the offloading 
delay associated with each candidate vehicle.

As mentioned above, an MAB-based learning 
method can be used to design the task offloading 
algorithm, but it still requires adaptations to fit the 
dynamic environment in VeFNs. To make MAB 
effective in VeFNs, we redesign the utility function 
of conventional MAB by considering the follow-
ing three key factors: 
•	 The empirical delay of the offloaded tasks, 

which is the delay performance of the candi-
date fog vehicles one has learned.

•	 The appearance time of each fog vehicle. 
The client vehicle should focus more on 
newly appearing fog vehicles, while exploit-
ing what it has already learned about the 
existing fog vehicles.

•	 The workload of each task. Since the offload-
ing delay is proportional to the workload, 
intuitively the client vehicle should try to 
exploit different fog vehicles when the work-
load is low so that the regret due to learning 
can be reduced, and vice versa. 

We propose an Adaptive Learning-Based Task 
Offloading (ALTO) algorithm, proving that the 
complexity of the ALTO algorithm is linear with 
the number of candidate fog vehicles, and the 
regret grows sublinearly over time [15].

For simulations, we download the map of a 
12 km stretch of the G6 Highway in Beijing from 
Open Street Map (OSM) and generate the traffic 
by Simulation of Urban Mobility (SUMO). Fog 
vehicles are equipped with heterogeneous com-
puting power, with CPU frequencies in the range 
of [2, 5] GHz. The input data size of each task is 

uniformly distributed in [0.2, 1] Mbits. We assume 
that tasks are of equal computation intensity 
1000 cycles/bit, and the size of the output data 
is neglected. The wireless connectivity is intermit-
tent, with the probability of successful transmis-
sion p = 0.9 or 0.95.

As shown in Fig. 3a, the proposed ALTO algo-
rithm is compared to three baselines: UCB1 is 
the conventional MAB-based learning algorithm 
[13]. Random Policy is a naive policy in which 
the client node randomly selects a fog vehicle 
for each task. Optimal Policy is a genie-aided one 
and always selects the best fog vehicle with min-
imum offloading delay. Since fog vehicles may 
appear as candidates or leave, the average delay 
fluctuates over time. According to the simulations, 
UCB1 does not work well with moving vehicles 
and time-varying workloads, while our proposed 
ALTO algorithm performs better in terms of aver-
age offloading delay. This highlights the impor-
tance of revisiting machine learning methods to 
deal with the dynamics in VeFNs.

To further improve the QoS, we integrate 
learning with task replication and (3,2) MDS cod-
ing. Still, the global state information is unknown 
and needs to be learned, and intermittent con-
nectivity is considered with p = 0.9. Figure 3b 
observes the ratio of tasks that are completed 
before a deadline 0.55s, and K is the number of 
replications. The optimal single offloading poli-
cy is the same as the Optimal Policy in Fig. 3a. It 
is shown that compared to the ALTO algorithm 
with single offloading, the service reliability is sub-
stantially improved through task replication, while 
light replication with K = 2 or K = 3 provides most 
of the gains. Meanwhile, the task completion ratio 
of MDS coding reaches over 98 percent with a 
small number of fog vehicles, and even outper-
forms the optimal single offloading policy. This is 
because MDS coding reduces the workload of 
each coded subtask, and can further exploit the 
computing resources of multiple fog vehicles.

Delay-Constrained Task Replication  
Exploiting Vehicle Mobility

In this case study, we focus on the vehicle/pedes-
trian-RSU-vehicle offloading mode with task repli-
cation. Each RSU collects tasks from pedestrians 
or vehicles, and then assigns them to the fog vehi-

Figure 3. Delay performance of MAB-based task offloading algorithms: a) average delay of ALTO algorithm; b) task completion ratio.
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cles coming into its coverage. Tasks have hard 
delay bound that cannot be violated. Multiple 
tasks collected by each RSU waiting to be execut-
ed form a task queue. Each fog vehicle is assigned 
one task at a time, and task replication is used, 
that is, each task can be assigned to multiple fog 
vehicles and executed independently.

Our objective is to minimize the deadline vio-
lation ratio of tasks by deciding which task should 
be allocated to which fog vehicle. Assume that 
the arrival of fog vehicles follows a Poisson pro-
cess, and the sojourn time (the duration of task 
assignment and result feedback) of each task at 
each fog vehicle follows exponential distribution 
with a homogeneous exponent. This enables a 
finite horizon Markov decision process (MDP) 
formulation of the problem, and we derive the 
optimal policy called balanced task assignment 
(BETA) [8]. The main intuition of BETA is that 
unfinished tasks with the fewest offloading rep-
lications should be scheduled first when a new 
fog vehicle arrives, and this balanced allocation of 
computing resources is optimal and avoids unnec-
essary service waste.

We further investigate how mobility affects 
the computing performance. Under a linear 
speed-density relationship widely used in vehi-
cle traffic theory, the optimal vehicle speed that 
maximizes the traffic throughput (the number of 
vehicles that pass through the road) is Vmax/2, 
where Vmax is the maximum allowed speed on the 
road. Generalizations to a nonlinear speed-density 
relationship can be found in [8], while the linear 
model is sufficient to capture the essence. In the 
a VeFN system, the optimal vehicle speed which 
minimizes the deadline violation ratio is proved 
to be 2Vmax/3, meaning that when vehicles move 
faster within 2Vmax/3, the reliability of computing 
services increases [8]. Note that these results are 
from a statistical point of view, that is, the opti-
mal speeds are averaged among all vehicles on 
the road. As shown in Fig. 4, when the vehicle 
speed increases, the deadline violation probability 
first decreases and then goes up. This is mainly 
because the mobility brings more opportunities 
for the RSUs to meet fog vehicles, and thus the 
reliability first increases. However, as the vehicle 
speed rises, the density of vehicles finally becomes 
too low to support the task requirements.

Conclusion and Outlook
In this article, we have presented the VeFN con-
cept with the latest literature review, and discussed 
the role of mobility for timely computing in VeFNs 
as a foe and as a friend. Enabling technologies to 
address and exploit mobility, including machine 
learning and coded computing, are introduced, 
and their initial adoptions in VeFNs are illustrat-
ed through two case studies. While notable gains 
in terms of lower average delay and lower delay-
bound violation probability are proved via a MAB-
based learning scheme and task replication, more 
efforts are needed to truly realize the potentials of 
VeFN accompanied by mobility.

First, computation task partition plays an 
important role in task offloading, but it has been 
rarely covered. Considering the heterogeneity 
of computing resources, task partition helps to 
optimize the utilization of resources and balance 
workloads.

Second, mobility prediction, either mod-
el-based or reinforcement-learning-based, can be 
exploited to reduce offloading delay by proactive 
resource provisioning or computation pre-fetch-
ing. Accordingly, coded computing over tasks 
generated at different times is also worth investi-
gating.

Last but not least, conventional encryption and 
authentication schemes may be too slow to per-
form in VeFNs with high dynamics, especially for 
delay-critical applications. Guaranteeing securi-
ty and privacy in task offloading calls for novel 
designs, and may trigger a new dimension to 
understand the mobility.
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