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Abstract—The vehicular edge computing system integrates the
computing resources of vehicles, and provides computing services
for other vehicles and pedestrians with task offloading. However,
the vehicular task offloading environment is dynamic and uncer-
tain, with fast varying network topologies, wireless channel states,
and computing workloads. These uncertainties bring extra chal-
lenges to task offloading. In this paper, we consider the task offload-
ing among vehicles, and propose a solution that enables vehicles
to learn the offloading delay performance of their neighboring
vehicles while offloading computation tasks. We design an adap-
tive learning based task offloading (ALTO) algorithm based on
the multi-armed bandit theory, in order to minimize the average
offloading delay. ALTO works in a distributed manner without
requiring frequent state exchange, and is augmented with input-
awareness and occurrence-awareness to adapt to the dynamic en-
vironment. The proposed algorithm is proved to have a sublinear
learning regret. Extensive simulations are carried out under both
synthetic scenario and realistic highway scenario, and results illus-
trate that the proposed algorithm achieves low delay performance,
and decreases the average delay up to 30% compared with the
existing upper confidence bound based learning algorithm.

Index Terms—Vehicular edge computing, task offloading, online

learning, multi-armed bandit.
Y DEPLOYING computing resources at the edge of the
network, mobile edge computing (MEC) can provide low-
latency, high-reliability computing services for mobile devices
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[2], [3]. A major problem in MEC is how to perform rask
offloading, i.e., whether or not to offload each task, and how to
manage radio and computing resources to execute tasks, which
has been widely investigated recently, see surveys [4]-[6] and
technical papers [7]-[9].

To support autonomous driving and a vast variety of on-board
infotainment services, vehicles are equipped with substantial
computing and storage resources. It is forecast that each self-
driving car will have computing power of 10° dhrystone million
instructions executed per second (DMIPS) in the near future[ 10],
which is tens of times that of the current laptops. Vehicles and
infrastructures like road side units (RSUs) can contribute their
computing resources to the network. This forms the Vehicu-
lar Edge Computing (VEC) system [11]-[13], that can process
computation tasks from vehicular driving systems, on-board
mobile devices and pedestrians for various applications.

In this paper, we focus on the task offloading among vehicles,
i.e., the driving systems or passengers of some vehicles generate
computation tasks, while some other surrounding vehicles can
provide computing services. We call the vehicles that require
task offloading task vehicles (TaVs), and vehicles who can help
to execute tasks service vehicles (SeVs). We design a distributed
task offloading algorithm to minimize the average delay, where
the task offloading decision is made by each TaV individually.

Multiple SeVs might be available to process each task, and a
key challenge is the lack of accurate state information of SeVs
in the dynamic VEC environment. The network topology and
the wireless channel states vary rapidly due to the movements of
vehicles [14], and the computation workloads of SeVs fluctuate
across time. These factors are difficult to model or to predict, so
that the TaV has no idea in prior which SeV performs the best
in terms of delay performance.

Our solution is learning while offloading, i.e., the TaV is able
to learn the delay performance while offloading tasks. To be
specific, we adopt the multi-armed bandit (MAB) framework to
design our task offloading algorithm [15]. The classical MAB
problem aims at balancing the exploration and exploitation
tradeoff in the learning process: to explore different candidate
actions that lead to good estimates of their reward distributions,
while to exploit the learned information to select the empirically
optimal actions. The upper confidence bound (UCB) based al-
gorithms, such as UCB1 and UCB2, have been proposed with
strong performance guarantee [15], and applied to the wireless
networks to learn the unknown environments [16]-[18].
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Fig. 1.

However, in our task offloading problem, the movements
of vehicles lead to a dynamic candidate SeV set, and the
workload of each task is time-varying, leading to a varying cost
in exploring the suboptimal actions. These factors have not
been addressed by existing MAB schemes, which motivates us
to specifically adapt the MAB framework in the vehicular task
offloading scenario. Our key contributions include:

(1) We propose an adaptive learning-based task offloading
(ALTO) algorithm based on MAB theory, in order to
guide the task offloading of TaVs and minimize the
average offloading delay. ALTO algorithm works in a
distributed manner and enables the TaV to learn the
delay performance of candidate SeVs while offloading
tasks. The proposed algorithm is of low computational
complexity, and does not require the exchange of accu-
rate state information like channel states and computing
workloads between vehicles, so that it is easy to imple-
ment in the real VEC system.

Two kinds of adaptivity are augmented with the proposed
ALTO algorithm: input-awareness and occurrence-
awareness, by adjusting the exploration weight accord-
ing to the workloads of tasks and the appearance time of
SeVs. Different from our previous theoretical work [19]
which only considers time-varying workloads of tasks
with fixed actions, we consider a more general case with
dynamic candidate SeVs (actions), and prove that ALTO
can effectively balance the exploration and exploitation in
the dynamic vehicular environment with sublinear learn-
ing regret.

Extensive simulations are carried out under a synthetic
scenario, as well as a realistic highway scenario using
system level simulator Veins. Results illustrate that our
proposed algorithm can achieve low delay performance,
and provide guidelines for the settings of key design
parameters.

The rest of this paper is organized as follows. We introduce
the related work in Section II. The system model and problem
formulation is introduced in Section III, and the ALTO algo-
rithm is then proposed in Section IV. The learning regret is
analyzed in Section V. Simulation results are then provided in
Section VI, and finally comes the conclusions in Section VII.

(@3]
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II. RELATED WORK
A. VEC Architecture and Use Cases

Anillustration of the VEC architecture is shown in Fig. 1. The
development of vehicle-to-everything (V2X) communication

An illustration of the VEC architecture and three major offloading modes.

techniques enable vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I) and vehicle-to-pedestrian (V2P) communi-
cations, so that tasks can be offloaded to other vehicles through
different kinds of routes. Specifically, there are three major of-
floading modes:

o Vehicle-Vehicle (V-V) Offloading: Vehicles directly offload
tasks to their surrounding vehicles with surplus computing
resources in a distributed manner. In this case, each indi-
vidual vehicle may not be able to acquire the global state
information for task offloading decisions, and there might
be no coordinations for task scheduling.
Pedestrian/Vehicle-Infrastructure-Vehicle (P/V-1-V) Of-
floading: When there are no other neighboring vehicles
for task offloading, one solution is that tasks are first of-
floaded to the infrastructures alongside, and then assigned
to other vehicles in a centralized manner.
Pedestrian/Vehicle-Infrastructure (P/V-1) Offloading: In
this mode, tasks are offloaded to the infrastructures for
direct processing.

Similar to the traditional cloud computing services, the VEC
system can provide infrastructure as a service (IaaS), platform
as a service (PaaS) and software as a service (SaaS) [13], and
support a wide variety of applications. For example, cooperative
collision avoidance and collective environment perception are
necessary for safety driving, where sensing data is generated by
a group of vehicles and processed by some of them [20], [21].
In vehicular crowd sensing, the video recordings and images are
generated by vehicles and required to be analyzed in real time,
in order to supervise the traffic, monitor the road conditions
and navigate car parkings [22]. The computing resources of ve-
hicles may be underutilized by the aforementioned vehicular
applications [11], which can further provide services for enter-
tainments and multimedia applications, such as cloud gaming,
virtual reality, augmented reality and video trans-coding [23].

B. Task Offloading Algorithms

There are some existing efforts investigating the task schedul-
ing and computing resource management problem in VEC. A
software-defined VEC architecture is proposed in [13]. Inspired
by the software-defined network, a centralized controller is de-
signed to periodically collect the state information of vehicles,
including mobility and resource occupation, and manage radio
and computing resources upon task requests. In terms of P/V-
I-V offloading, a semi-Markov decision based centralized task
assignment problem is formulated in [24], in order to minimize
the average system cost by jointly considering the delay of tasks
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and the energy consumption of mobile devices. Ref. [25] further
introduces task replication technique to improve the service reli-
ability of VEC, where task replicas can be offloaded to multiple
vehicles to be processed simultaneously. However, a key draw-
back of the centralized framework is that, it requires frequent
state information update to optimize the system performance,
which is of high signaling overhead.

An alternative method is to make task offloading decisions
by the task generators in a distributed manner. An autonomous
vehicular edge framework which enables V-V and V-1 offloading
is proposed in [23], followed by a task scheduling algorithm
based on ant colony optimization. However, when the number
of vehicles is large, the computational complexity can be quite
high. We will design a distributed task offloading algorithm with
low complexity.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. V-V Offloading: System Overview

We consider V-V offloading in the VEC system, where ve-
hicles involved in the task offloading are classified into two
categories: TaVs are the vehicles that generate and offload com-
putation tasks for cloud execution, while SeVs are the vehicles
with sufficient computing resources that can provide computing
services. Note that the role of each vehicle depends on the suf-
ficiency of its computing resources, and is not fixed to TaV or
SeV during the trip.

TaVs can offload tasks to their neighboring SeVs. Each TaV
may have multiple candidate SeVs that can process the tasks,
and each task is offloaded to a single SeV and executed by it.
As shown in Fig. 1, for TaV 1, there are 3 candidate SeVs (SeV
1-3), and currently the task is offloaded to SeV 3.

In this work, we design distributed task offloading algorithm
to minimize the delay performance, by letting each TaV decide
which SeV should serve each task independently, without inter-
TaV cooperations. Moreover, we do not make any assumptions
on the service disciplines of SeVs, nor the mobility models of
vehicles.

B. Task Offloading Procedure

Since offloading decisions are made in a distributed manner,
we then focus on a single TaV of interest and model the task of-
floading problem. Consider a discrete-time VEC system. There
are four procedures for task offloading within each time period:

SeV discovery: The TaV discovers neighboring SeVs within
its communication range, and selects those in the same moving
direction as candidates. Here the driving states of each vehicle,
including speed, location and moving direction, can be acquired
by other neighboring vehicles through vehicular communication
protocols. For example, in dedicated short-range communica-
tion (DSRC) standard [26], the periodic beaconing messages
can provide these state information. Denote the candidate SeV
set in time period ¢ by A/ (¢), which may change across time
since vehicles are moving. And due to the unknown mobil-
ity model, candidate SeVs in the future are unknown in prior.
Besides, assume that N/ (t) # () for Vt, otherwise the TaV can
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seek help from RSUs along the road, which is beyond the scope
of this paper.

Task upload: After updating the candidate SeV set N (t) at
the beginning of each time period, the TaV selects one SeV n €
N (t) and uploads the computation task. Denote the input data
size of the task generated in time period ¢ by x; (in bits), which is
required to be transmitted from TaV to SeV. The uplink wireless
channel state between TaV and SeV n € N(t) is denoted by
hE“,l) ,and the interference power at SeV n is ") . We assume that
the wireless channel state remains static during the uploading
process of each computation task. Given the fixed transmission
power P, channel bandwidth 1/ and noise power o2, the uplink

transmission rate ri”? between the TaV and SeV n is

(W) _ Phy")
Ty = Wlogy [ 1+ O] n oy (D)
ag

t,n

And the transmission delay d,,(¢,n) of uploading the task to
SeV n in time period ? is given by

dup(t,n) = —-. )

Task execution: The selected SeV n processes the task after
receiving the input data from the TaV. For the task generated in
time period ¢, the total workload is given by z;w;, where wy is
computation intensity (in CPU cycles per bit) representing how
many CPU cycles are required to process one bit input data [4].
The computation intensity w; of the task mainly depends on the
nature of applications.

The computing capability of SeV n is described by its max-
imum CPU frequency F;, (in CPU cycles per bit), and the al-
located CPU frequency to the task of TaV in time period ¢ is
denoted by f; ,,. The SeV may deal with multiple computation
tasks simultaneously, and adopt dynamic frequency and voltage
scaling (DVFS) technique to dynamically adjust the CPU fre-
quency [27], and thus we have f; ,, € [0, F},]. We assume that
f+» remains static during each time period ¢, and each com-
putation task can be completed within each time period due to
the timely requirements. Tasks of larger workloads can be fur-
ther partitioned into multiple subtasks [18], [28], so that each
subtask is offloaded to and processed by a SeV within one time
period. Then the computation delay can be written as

LWy
ft,77, .

Result feedback: Upon the completion of task execution, the
selected SeV n transmits back the result to the TaV. Let h;d,z
denote the downlink wireless channel state, which is assumed to
be static during the transmission of each result. The interference
at the TaV is denoted by I\"”). Similar to (2), the downlink

transmission rate 7% from SeV n to TaV can be written as

dcom (tv n) =

3

d

(d) al Phg,g
rt,n = 0og» 1+ W . (4)
g t

The data volume of the computation result in time period ¢ is
denoted by ¥, (in bits), and thus the downlink transmission delay
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from SeV n to the TaV is

ddow (t7 n) = :(g:;> . (5)

Tt,n

Then the sum delay dgun, (¢, n) of offloading the task to SeV
n in time period ¢ can be given by

dsum (t7 n) = dup (ta TL) + dcom (t> n) + ddow (t7 n) (6)

C. Problem Formulation

Consider a total number of 7' time periods. Our objective is
to minimize the average offloading delay, by guiding the task
offloading decisions of the TaV on which SeV should serve each
task. The task offloading problem is formulated as

P1: min
ar,y...,ar

T
1
T E dsum (t7 at )7 (7)
t=1

where a; is the optimization variable, which represents the index
of SeV selected in time period ¢, with a; € N(1).

Availability of state information: The state information re-
lated to the delay performance can be classified into two cate-
gories based on its ownership: parameters of each task, including
the input and output data volumes z;, y; and computation inten-
sity wy, are known by the TaV upon the generation of each task.
The uplink and downlink transmission rates r\"), ) and the
allocated CPU frequency f; ,, are closely related to the SeV. If
all these states are exactly known by the TaV before offloading
each task, the sum delay dgup, (£,m) of SeV n € N (t) can then
be calculated, and the optimization problem P1 is easy to solve
with

a; = min dyyy (¢, n). (8)
n EM

However, due to the mobility of vehicles, the transmission
rates vary fast across and are difficult to predict. Since there is
no cooperation between TaVs, the computation loads at SeVs
dynamically change, making the allocated CPU frequency vary
across time. Moreover, exchanging these state information be-
tween the TaV and all candidate SeVs causes high signaling
overhead. Therefore, the TaV may lack the state information of
SeVs, and can not realize which SeV provides the lowest delay
when making offloading decisions.

Learning while offloading: To overcome the unavailabil-
ity of the state information of SeVs, we propose the ap-
proach learning while offloading: the TaV can observe and
learn the delay performance of candidate SeVs while offload-
ing computation tasks. Specifically, the SeV a; in time pe-
riod 7 is selected according to the historical delay observations
d(1,a1),d(2,a;),...,d(t — 1,a;_1), without acquiring the ex-
act transmission rates and CPU frequency. We aim to design a
learning algorithm that minimizes the expectation of offloading
delay, written as

t=1

T
. 1
P2: (llml%T T]E [Z dsum (taat)] . (9)

In the rest of the paper, we consider a simplified version of P2
by assuming that the input data size z; of task is time-varying,
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but the computation intensity w; and the ratio of output and input
data volume y; /x; remains constant across time. In practical,
this is a valid assumption when tasks are generated by the same
type of application. Let y; /2, = o and w; = wy for V¢. Then
the sum delay of offloading the task to SeV n in time period ¢
can be transformed as

1 (7)) wo
dsum (tn) =21 | — + — + — | - (10)
f ( T fm)
Define the bit offloading delay as
(&%) wo
u(t,n) = —+ —5 + 7 (1D
T

which represents the sum delay of offloading one bit input data
of the task to SeV n in time period ¢. The bit offloading delay
u(t,n) reflects the service capability of each candidate SeV,
which is what the TaV needs to learn.

Finally, the optimization problem can be written as

T
. 1
P3: almn{}T T]E lz xtu(t,n)] ) (12)

t=1

IV. ADAPTIVE LEARNING-BASED TASK
OFFLOADING ALGORITHM

In this section, we develop a learning-based task offloading
algorithm based on MAB, which enables the TaV to learn the de-
lay performance of candidate SeVs and minimizes the expected
offloading delay.

Our task offloading problem P3 requires online sequential
decision making, which can be solved according to the MAB
theory. Each SeV corresponds to an arm whose loss (bit of-
floading delay) is governed by an unknown distribution. The
TaV is the decision maker who tries an arm at a time and learns
the estimation of its loss, in order to minimize the expectation
of cumulative loss across time. However, the variations of in-
put data size z; and candidate SeV set ; incapacitate existing
algorithms of MAB, such as UCB1 and UCB2, in the VEC
system.

In this work, we propose an Adaptive Learning-based Task
Offloading (ALTO) algorithm which is aware of both the input
data size of tasks and the occurrence of vehicles, as shown in
Algorithm 1. Parameter 3 is a constant weight, and &, ,, records
the number of tasks that have been offloaded to SeV n up till
time ¢. The occurrence time of SeV n is recorded by ¢,,, and the
input data size x; is normalized to be 2; within [0, 1] as:

Ty = max {min (M, 1) 70} ,
xt —a~

where z* and 2~ are the upper and lower thresholds to nor-
malize x;. In particular, if z+ = 27, Z; = Owhenz; < z~, and
Ty = 1 whenx; >z~

In Algorithm 1, Lines 3-5 are the initialization phase, which is
called whenever new SeVs occur as candidates. The TaV selects
the newly appeared SeV n once and offloads the task, in order
to get an initial estimation of its bit offloading delay.

13)
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Algorithm 1 ALTO: Adaptive Learning-based Task
Offloading Algorithm.

1: Input: parameters o, wo, 3, x* and 2.

2: fort=1,...,T do
3: if Any SeV n € N(t) has not connected to TaV then
4: Connect to SeV n once.
S: Update at,n - dsum (t; Tl)/ﬂft, ktJL - 1’ tn =1.
6: else
7: Observe x;, calculate ;.
8: Calculate the utility function of each candidate SeV
n e N(t):
1—2)In(t —t
ﬂt,n - at—hn - \/ﬁ( a];t) n( TL) . (14)
t—1,n
9: Offload the task to SeV ay, such that:
a; = arg min . (15)

neN(t)

10: Observe the sum offloading delay dgum (¢, a;).

Ut tay ki —1,a;, Tdsum (t,a0) /24

11: Update @ 4,

k14, +1
12: Update k; ,, < ki—1,4, + 1.
13: end if
14: end for

Lines 7-12 are the main loop of the learning process, inspired
by the volatile UCB (VUCB) algorithm [29] and the our previ-
ous work on opportunistic MAB [19]. During each time period,
the TaV gets the data volume z; before offloading the task and
calculates ;. The utility function defined in (14) is used to
evaluate the service capability of each SeV, which consists of
the empirical bit offloading delay %, ,, and a padding function.
Specifically, 4, is the average bit offloading delay of SeV n
observed until time period ¢. And the padding function jointly
considers the input data size and occurrence time of each SeV,
in order to balance the exploration and exploitation in the learn-
ing process, and adapt to the dynamic VEC environment. The
offloading decision is then made according to (15), by selecting
the SeV with minimum utility. Finally, the offloading delay is
observed upon result feedback, and # ,, and k; ,, is updated.

Two kinds of adaptivity of the algorithm are highlighted as
follows.

Input-awareness: The input data size x; can be regarded
as a weight factor on the offloading delay. Intuitively, when x;
is small, even if the TaV selects a poorly performed SeV, the
sum offloading delay will not be too large. On the other hand,
when x; is large, selecting a SeV with weak service capability
brings great delay degradation. Therefore, the padding function
is proportional to v/1 — z; that is non-increasing as x; grows,
so that ALTO explores more when x; is small, while exploits
more when z; is large.

Occurrence-awareness: The random presences of SeVs
are also considered, and the proposed ALTO algorithm has
occurrence-awareness. To be specific, for any newly appeared

SeV. In(t—t,)

7, is large due to the small number of selections
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ki—1,n, so that ALTO tends to explore more. Meanwhile, ALTO
is able to exploit the learned information of any existing SeV,
since more times of connections lead to a small value of the
padding function.

A. Complexity

In our proposed ALTO algorithm, the computational com-
plexity of calculating the utility functions of all candidate SeVs
in Line 8 is O(N), where N = |[N/(t)| is the number of candi-
date SeVs in time period ¢. The task offloading decision made
in Line 9 is a minimum seeking problem, with complexity
O(N). Updating the empirical bit offloading delay 1 ,, and of-
floaded times k; ,, has a complexity of O(1). Therefore, within
each time period, the total computational complexity of running
ALTO to offload one task is O(V). Assume that there are totally
M tasks required to be offloaded in the VEC system. Since TaVs
offload tasks independently, the total amount of computation is
O(MN).

An ant colony optimization based distributed task offload-
ing algorithm is proposed in [23]. According to Section V-D,
the computational complexity is O(KM?N), where K is the
number of iterations required by the ant colony optimization.
Therefore, ALTO is of lower complexity than the existing algo-
rithm in [23].

B. Signaling Overhead

Considering the distributed V-V offloading case, the
complete-state task offloading (CSTO) policy is that, the TaV
obtains the accurate state information of all candidate SeVs,
evaluates their delay performance, and selects the SeV with
minimum offloading delay. Compared with the CSTO policy,
our proposed ALTO algorithm is of lower signaling overhead
and much easier to implement in the real VEC system.

First, the uplink and downlink wireless channel states, allo-
cated CPU frequency and interference of each candidate SeV
are not required to know by the ALTO algorithm. Therefore,
for each TaV, offloading a task can save at least NV signaling
messages for the state information of the /N candidate SeVs,
and M N signaling messages can be saved for M tasks. Second,
when a SeV is serving multiple TaVs simultaneously, the CSTO
policy needs to know the task workload of TaVs to allocate
computing resources of the SeV. In this case, more signaling
messages are generated by the CSTO policy. Last but not least,
frequent signaling exchange may lead to additional collisions
and retransmissions, and the delayed state information may
not be accurate. The proposed ALTO algorithm enables each
TaV to learn the state information of SeVs instead of obtaining
them from signaling messages, and thus reduces the signaling
overhead.

V. PERFORMANCE ANALYSIS

In this section, we characterize the delay performance of the
proposed ALTO algorithm. We adopt the learning regret of delay
as the performance criteria, which is widely used in the MAB
theory. Compared with the existing UCB based algorithms in
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[15], two major modifications in ALTO are the occurrence time
t,, and normalized input z,. We first evaluate their impacts on
the learning regret separately, and then jointly analyze these two
factors.

A. Definition of Learning Regret

Define an epoch as the interval during which candidate SeVs
remain identical. The total number of epochs during the consid-
ered T time periods is denoted by B, and let \V;, be the candidate
SeV set of the bth epoch, where b = 1,2, ..., B. Let t;, and t; be
the start and end time of the bth epoch, with¢; = 1 and t; = T.

For theoretical analysis, we assume that for each SeV n, its
bit offloading delay (¢, n) is i.i.d. over time and independent of
others. We will show in Section VI through simulation results
that without this assumption, ALTO still works well.

Define the mean bit offloading delay of each candidate SeV n
as ft, = E;[u(t,n)]. During each epoch, let pj = min, cp; iy
be the optimal bit offloading delay, and a; = argmin, cp;, (i,
the index of the optimal SeV. Note that y; and a; are unknown
in prior.

The learning regret represents the expected cumulative per-
formance loss of sum offloading delay brought by the learning
process, which is compared with the genie-aided optimal policy
where the TaV always selects the SeV with maximum service
capability. The learning regret by time period 7" can be written
as

Rp =) E|> i (u(t,n) — )|,

In the following subsections, we will characterize the upper
regret bound of ALTO algorithm.

(16)

B. Regret Analysis Under Dynamic SeV Set and
Identical Input

We first assume that the input data size is not time-varying,
and analyze the learning regret under varying SeV set. Let z; =
xq for Vt, and x* = 2~ = @0, then Z; = 0. The utility function
(14) becomes

Bln(t —t,)

; (17)
ktfl,n

Upy = Up—1,n —

and the learning regret

B
RT Z.T()ZE
b=1

Also, define the maximum bit offloading delay during the 7’
time periods as u,,, = sup;, ,, u(t, n), the performance difference
between any suboptimal SeV n € N, and the optimal SeV in
the bth epoch 6, ;, = (pn, — 1) /um . Let 3 = Bou?,, where 3,
is a constant.

The learning regret within each epoch is upper bounded in
Lemma 1.

Lemma 1: Let 3y = 2, the learning regret of ALTO with dy-
namic SeV set and identical input data size has an upper bound

’
tb

> (ult,n) = p;)

t=ty

(18)
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in each epoch. Specifically, in the bth epoch:

7r2
Ry <zoup, | Y +<1+3) ; Gup |- (19)
n ab

n#a;
Proof: See Appendix A. |
Then we have the following Theorem 1 that provides the
upper bound of the learning regret over I" time periods.
Theorem 1: Let 3y = 2. For a given time horizon T, the total
learning regret R of ALTO dynamic SeV set and identical input
data size has an upper bound as follows:

8In(t, —t,)
6n7b

B

Ry < xouy, Z Z

b=1 | n#a;

8InT

571,1)

+0(1) (20)

Proof: See Appendix B. |

Theorem 1 implies that, our proposed ALTO algorithm pro-
vides a sublinear learning regret compared to the genie-aided
optimal policy. To be specific, within each epoch, the learning
regret is governed by O(InT'), and inversely proportional to
the performance difference 4,, ;, of optimal SeV and suboptimal
SeV n # a;. Moreover, for any finite time horizon 7" with B
epochs, ALTO achieves O(B InT') learning regret.

Remark 1: The random appearance and disappearance of
SeVs affect the number of epochs B and the learning regret
O(BInT). Within a fixed number of time periods, higher ran-
domness of SeVs results in a more dynamic environment, and
thus higher learning regret.

Remark 2: To prove Lemma 1 and Theorem 1, we have to
normalize the bit offloading delay u (¢, n) within [0, 1] for V¢, n,
by setting u,, = sup, ,, u(t,n). In practical, the exact value of
u,, 1S not easy to acquire in prior. Instead, w,, can be set to the
maximum w (¢, n) that has been observed till the current time
period.

C. Regret Analysis Under Varying Input and Fixed
Candidate SeVs

We then characterize the upper bound of the learning regret
within a single epoch, and consider that the input data size
x; is random and continuous. Let B = 1. The optimal SeV is
a* = argminy,cp; /in, and its mean bit offloading delay p* =
miny, ep; - The learning regret can be simplified as

T
> ai(u(t,n) — M*)] :
=1

The following theorem bounds the learning regret under vary-
ing input data size and fixed candidate SeV set.

Theorem 2: Let By = 2,and P{z; < 2~} > 0.For any finite
time horizon 1", we have:

(1) When 't > 2™, the expected number of tasks kr. of-
floaded to any SeV n # a* can be bounded as

Rr =E 21

8InT
2

n
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(2) With 2t = x~, the learning regret can be bounded as

RTSUmZ

n#a*

{8 InTE[z;|z; < 27|

1
- +o).

(23)

where E[z;|x; < x| is the expectation of z; on the condition
that x; < x~, u,, =sup, , u(t,n), and §,, = (p, — p*) /U, .

Proof: See Appendix C. |

According to Theorem 2, the time order of the learning regret
is O(InT), indicating that under time-varying input data vol-
ume, the TaV is still able to learn which SeV performs the best,
and achieves a sublinear deviation compared to the genie-aided
optimal policy.

Recall that compared to the existing UCB based algorithms,
the major modification under varying input is the introduction
of normalized input z;, which dynamically adjusts the weight of
exploration and exploitation. As shown in (23), the consideration
of &, brings an coefficient E [x;|x; < 7] to the learning regret.
When the input data size is fixed to xg, the coefficient of the
learning regret of conventional UCB algorithms is x. Therefore,
by properly selecting the lower threshold =, we have E[xz; |z; <
2] < xo. This implies that the proposed ALTO algorithm can
take the opportunity to explore when x; is small, and achieve
lower learning regret.

Moreover, when the task offloading scenario is simplified
to the case with fixed candidate SeVs and identical input data
size, the proposed ALTO algorithm reduces to a conventional
UCB algorithm, and the lower bound of the learning regret
has been investigated in [30]-[32], which is provided in Ap-
pendix D. Specifically, the regret lower bound of conventional
UCB algorithms is zoum D, 4, glﬁr},ila,]:) , where D(n, a*) is the
Kullback-Leibler divergence of the bit offloading delay distri-
butions. Therefore, in the case with varying input, the regret
upper bound of ALTO is even possible to be smaller than the
lower bound of conventional UCB algorithms, due to the input-
awareness.

D. Joint Consideration of Occurrence-Awareness and
Input-Awareness

Finally, we analyze the learning regret by jointly considering
the occurrence of vehicles and the variations of input data size.
Although these two factors are independent with each other, they
actually couple together in the utility function (14), and collec-
tively balance the exploration and exploitation in the learning
process. Therefore, it is quite difficult to derive the upper bound
of the learning regret in this case.

We study a special case with periodic input and fixed bit
offloading delay, and derive the theoretical upper bound to pro-
vide some insights. To be specific, assume that the input data
size x; = ¢p when ¢ is even, and x; = 1 — ¢; when t is odd,
where €p, ¢; € [0,0.5). Let zt = 1, and = = ¢, thus Z; = 0
when z; = ¢p, and 7; = 1 — li‘e when z; = 1 — ¢; Consider
two SeVs appear at t; and t, respectively, and t; # ¢,. Then
there are 2 epochs during 7" time periods, and we only need to
focus on the second epoch, since the first epoch only has one
SeV available. The bit offloading delay of each SeV is fixed,
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with u(t,n) = u, forVt,n = 1,2, but unknown in prior. With-
out loss of generality, let p1; < po, and A = (up — 1)/ 2.
The learning regret can be written as

T

S (ultin) — )

max{ty,t,}

= (p2 — m)E {k(TZ)Z} :

Ry =E

(24)

where k(T2>2 represents how many times SeV 2 is selected in the
second epoch.

The upper bound for learning regret of ALTO algorithm under
periodic input and fixed bit offloading delay is given in the
following theorem.

Theorem 3: Let 3y = 2. With periodic input data size and
fixed bit offloading delay, we have:

< 2[1,26() InT
- A

Proof: See Appendix E. |

The learning regret in (25) indicates that, when jointly consid-
ering the time-varying feature of input data size and candidate
SeV set, the proposed ALTO algorithm still achieves O(InT')
regret, and focuses on the exploration only when the input is
low (z; = €).

Conjecture 1: The proposed ALTO algorithm with random
continuous input data size and dynamic SeV set achieves
O(BInT) learning regret.

The conjecture follows the insight that, when the candidate
SeV set is identical over time, the learning regret can be derived
in a general case with random continuous input and random bit
offloading delay, as shown in (23). When the occurrence time of
each SeV is different, within single epoch, the learning regret in
(25) resembles (23), both governed by the time order O(InT).
Following the similar generalization method in [19], we may
draw a similar conclusion that with random continuous input
data size and dynamic SeV set, the learning regret within an
epoch is O(InT'), and the total learning regret is O(BInT).

Ry +0(1). (25)

VI. SIMULATIONS

To evaluate the average delay performance and learning re-
gret of the proposed ALTO algorithm, we carry out simulations
in this section. We start from a synthetic scenario to evaluate
the impact of key parameters, and then simulate a realistic high-
way scenario using system level simulator Veins' (VEhicles
in Network Simulations) to further verify the proposed ALTO
algorithm.

A. Simulation Under Synthetic Scenario

We carry out simulations in the synthetic scenario using
MATLAB. Consider one TaV of interest, with 8 SeVs that ap-
pear as candidates during 7' = 3000 time periods. The commu-
nication range is set to 200m. The distance of the TaV and each
candidate SeV ranges within [10, 200] m, and changes randomly

Uhttp://veins.car2x.org/
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TABLE I
CANDIDATE SEVS AND MAXIMUM CPU FREQUENCY

Index of SeV 1 2 3 4 5 6 7 8

Fy, (GHz) 35145 5 |55 3 6.5 6 4

Epoch 1 (time 1~1000) VIVIVIVIVI] - - | -
Epoch 2 (time 1001~2000) VIVIVIVIXT VIV -
Epoch 3 (time 2001~3000) || x | v/ | v | V | x| x | V|

from —10 m to 10 m in each time period. The occurrence and
disappearance time of SeVs, as well as their maximum CPU fre-
quency F}, are shown in Table I. There are 3 epochs, and each
lasts 1000 time periods. In the first epoch, there are 5 candidate
SeVs. At the beginning of the second epoch, a less powerful
SeV 5 disappears and SeVs 6 and 7 with higher computing ca-
pability appear. At the beginning of the third epoch, SeVs 1 and
6 disappear, while SeV 8 with suboptimal computing capabil-
ity arrives. Note that the occurrence and disappearance time of
SeVs are unknown to the TaV in prior.

The input data size x; follows uniform distribution within
[0.2,1] Mbits. The computation intensity is set to wy =
1000 Cycles/bit, and the upper and lower thresholds are se-
lected such that P{z < 2~} = 0.05 and z* = x~. Recall that
for each SeV, the allocated CPU frequency f;, to the TaV
is a fraction of the maximum CPU frequency, which is ran-
domly distributed from 20%F;, to 50%F,, . The wireless channel

state is modeled by an inverse power law h\") = hgd,f = Aol 2,
with Ag = —17.8 dB, and [ is the distance between TaV and
SeV [33]. Other default parameters include: transmission power
P =0.1 W, channel bandwidth W = 10 MHz, noise power
o2 =10"1 W, and weight factor Gy = 0.5.

In Fig. 2, the proposed ALTO algorithm is compared with
three existing learning algorithms under the MAB framework.

1) UCB is proposed in [15], which is neither input-aware nor
ZInt 2) VUCB
is aware of the occurrence of SeVs, with padding function

Sl 129). 3) AdaUCB s input-aware, with padding

occurrence-aware, with padding function

t—tn "

function W [19]. Note that in the first epoch, VUCB

is equivalent to UCB, and AdaUCB is equivalent to ALTO.
Besides, in the Optimal genie-aided policy, the TaV always
connects to the SeV with minimum expected delay, which is the
delay lower bound of the learning algorithm.

The comparison of learning regret is shown in Fig. 2(a), which
provides two major observations as follows. First, the proposed
ALTO algorithm performs the best among the four learning
algorithms. To be specific, both VUCB and AdaUCB achieve
lower learning regret compared with UCB algorithm, which
means that either input-awareness or occurrence-awareness
brings adaptivity to the dynamic VEC environment and reduces
loss of delay performance through learning. The joint consid-
eration of these two factors further optimizes the exploration-
exploitation tradeoff, and decreases the learning regret by 85%,
65% and 30% from that of UCB, VUCB and AdaUCB respec-
tively. Second, the learning regret of ALTO grows sublinearly
with time ¢, indicating that the TaV can asymptotically con-
verge to the SeV with optimal delay performance. As shown
in Fig. 2(b), during each epoch, the average delay of ALTO
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Fig. 2. Comparison of ALTO algorithm and existing learning algorithms in
terms of the learning regret and average delay.

converges faster to the optimal delay than other learning
algorithms, and achieves close-to-optimal delay performance.

We then consider a single epoch and set SeVs 2-7 in Table I
as candidates for 3000 time periods. Fig. 3 evaluates the impact
of weight factor (3 on the learning regret. When 3y = 0, there
is no exploration in the learning process, and the learning regret
is drastically worse than those of 5y > 0, since ALTO may stick
to a suboptimal SeV for a long time. When 3y > 0, the learning
regret grows up slightly as /3, increases. Although the existing
effort shows that the sublinear learning regret is achieved when
Bo > 0.5 [31], in our simulation, the learning regret is lower
when 3y = 0.2. The reason may be that only a small number of
explorations can help the TaV to find the optimal SeV under our
settings.

Finally, we try different pairs of upper and lower thresh-
olds for normalizing the input data size, and evaluate the
effect on the learning regret. Define P{z <z} = p* and
P{x <2~} = p, as the probability that the input data size is
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Fig. 4. Learning regret of ALTO under different normalized factors ™ and
o, withP{z <zt}=pt andP{x <z} =p".

higher (or lower) than the upper (or lower) threshold. Two kinds
of thresholds are selected: 1) p™ = p~, indicating that ™ = 2~
and explorations happen only when z < x7.2) 1 —p™ =p~,
where explorations also happen when the input data size is be-
tween x~ and xt. As shown in Fig. 4, the proposed ALTO
algorithm always outperforms UCB algorithm. Moreover, the
learning regret under p* = p~ is lower than the case when
1 — p* = p~, and achieves the lowest when p™ = p~ = 0.05
under our settings, which we set as default.

B. Simulation Under Realistic Highway Scenario

In this subsection, simulations are further carried out using
system level simulator Veins, in order to evaluate the average
delay of ALTO under a realistic highway scenario.

The simulation platform Veins integrates a traffic simula-
tor Simulation of Urban MObility (SUMO)* and a network

Zhttp://www.sumo.dIr.de/userdoc/SUMO.html
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Fig. 6. The average delay performance of ALTO algorithm in the highway
scenario with 1 TaV.

simulator OMNeT++,> and enables to use real maps from Open
Street Map (OSM).* Vehicular communication protocols includ-
ing IEEE 802.11p for PHY layer and IEEE 1609.4 for MAC
layer are supported by Veins, together with a two-ray interfer-
ence model [34] which captures the feature of vehicular channel
better.

A 12 km segment of G6 Highway in Beijing is downloaded
from OSM and used in our simulation, with two lanes and two
ramps, as shown in Fig. 5. The maximum speed of TaVs and

3https://www.omnetpp.org/documentation
“http://www.openstreetmap.org/
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Fig. 7. The average delay performance of ALTO algorithm in the highway
scenario with 10 TaVs, whose inter-arrival time is fixed to 10 s.

SeVs is set to 60 km/h. The TaV moves from A to D, and SeVs
have three routes: A to D, A to C and B to D. The arrival
of SeVs is modeled by Bernoulli distribution, with probability
pac = pp = 0.05, and pap ranging from 0.1 to 0.2 (e.g., pac
is the probability of the generation of a SeV which departs
at A and leaves the road from C at each second). Besides the
aforementioned UCB, VUCB and AdaUCB algorithms, we also
adopt a naive Random policy as a baseline, where the TaV
randomly selects a SeV for task offloading in each time period.

Fig. 6 shows the average delay performance with a single
TaV, which means the density of SeV is much higher than that
of TaV. And in Fig. 7, we consider 10 TaVs that depart every 10
seconds. In this case, each TaV is within some other TaVs’ com-
munication range, and thus they might compete for bandwidth
and computing resources. We make three major observations
as follows. First, the proposed ALTO algorithm always out-
performs the other learning algorithms and the random policy,
illustrating that ALTO can adapt to the vehicular environment
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better. To be specific, compared with the UCB algorithm, when
pap = 0.1, ALTO can reduce the average delay by about 30%
under single TaV case (Fig. 6(a)), and 13% under multi-TaV sce-
nario (Fig. 7(a)). Second, the average delay grows up when the
density of TaV becomes high, since each SeV may serve multi-
ple TaVs simultaneously. Besides, as shown in Fig. 7, when the
density of TaV is high, the average delay performance decreases
as the arrival probability of SeV increases, since the computing
resources are more sufficient.

VII. CONCLUSIONS

In this paper, we have studied the task offloading problem
in vehicular edge computing (VEC) systems, and proposed an
adaptive learning-based task offloading (ALTO) algorithm to
minimize the average offloading delay. The proposed algorithm
enables each task vehicle (TaV) to learn the delay performance
of service vehicles (SeVs) in a distributed manner, without
frequent exchange of state information. Considering the time-
varying features of task workloads and candidate SeVs, we have
modified the existing multi-armed bandit (MAB) algorithms to
be input-aware and occurrence-aware, so that ALTO algorithm
is able to adapt to the dynamic vehicular task offloading envi-
ronment. Theoretical analysis has been carried out, providing
a sublinear learning regret of the proposed algorithm. We have
evaluated the average delay and learning regret of ALTO under
a synthetic scenario and a realistic highway scenario, and shown
that the proposed algorithm can achieve low delay performance,
and decrease the learning regret up to 85% and the average delay
up to 30%, compared with the classical upper confidence bound
algorithm.

As future work, we plan to formulate the task offloading
problem based on adversarial MAB framework [32], where no
stochastic assumptions are made on the delay performance of
SeVs. The adversarial setting makes learning more difficult, but
may perform better under more complicated vehicular environ-
ments such as urban scenarios. Besides, we plan to consider the
joint resource allocation of vehicles and infrastractures in the
VEC system, in order to further optimize the delay performance.

APPENDIX A
PROOF OF LEMMA 1

In the bth epoch, the learning regret is

t

> ult,n) g

t=ty

E k, b Um oy b

Ln e,

= ToUm Z 571,17]E[kn,b]a
n#a;

Rb = I()E

= LE()E

(26)

where k, ; is the number of tasks offloaded to SeV n € N, in
the bth epoch. According to Lemma 1 in [29] and Theorem 1 in
[15], when Gy = 2, the expected number of tasks offloaded to a
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suboptimal SeV has an upper bound as follows

81In(t, — ty :
Efk, ) < 220G =0) T 27)
' 5n.b 3
Substituting (27) into (26), we get:
Ry = xouy, Z O v E[kn ]
n#a;
81n(t), —t,) w2
< 3ot S =t (4 I Sun|. (28
<oty ; 513 ; | (28)
n ab ’ n ah

Thus we can prove Lemma 1.

APPENDIX B
PROOF OF THEOREM 1

We have t; < T for ¥b=1,2,..., B. Following Lemma 1,
the learning regret in the bth epoch can be bounded from above
as:

81In(t, — t, 2
Ry < oy, Z n((;’)+<1+7; Z%,b
_n;ﬁa; n,b n#a;
8InT
< Toup, Z 6nb +0(1) (29)
_n;éaz m,

By summing over the learning regrets of the B epochs, we
have:

B

B
Ry = Z Rb < ZoUp, Z

b=1 b=1

8InT
5n,b

+0(1) (30)

n#a;

Thus Theorem 1 is proved.

APPENDIX C
PROOF OF THEOREM 2

When 3y = 2 and B = 1, the utility function in (14) is

2(1 — &) Int

31
ktfl,n ( )

Ut.n = ﬁf,*l,n — Um

The decision making function in (15) can be written as

a; = arg min iy ,
neN; -’

neiN

2(1 — &) Int
ktfl,n

= arg Hl}\l}l {utl,n — Um

, {utl,n 2(1 —jt)lnt}
= arg min —

neN; Uy, ki_1 n

ﬂtfl,n
U, ki—1n

(32)

= arg max {1 —
nENl
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The learning regret can be written as

T
Ry =E | > a(u(t,n) - u*)]
t=1
T
* t
—unE |3z, {(1— a )—(1—“( n))} . (33)

=1 Um U

Since 1 — “=L2 ¢ [0, 1], and 1 — w € [0, 1], the task of-

floading problerllnl can be transformed to the opportunistic bandit
problem defined in Section III in our previous work [19], with
equivalent definitions of learning regret, utility and decision
making (as shown in [19], eq. (1-3)). By leveraging Lemma
7 and Appendix C.2 in [19], we can get the upper bound of
E[kr ], as shown in Theorem 2(1). By leveraging Theorem 3
and Appendix C.2 in [19], we can get the upper bound of the
learning regret Ry, as shown in Theorem 2(2).

APPENDIX D
REGRET LOWER BOUND

The regret lower bound of classical UCB algorithms has been
investigated in [30]-[32]. In the following, we provide a regret
lower bound of ALTO in a simple task offloading case, with
identical input data size z( and fixed candidate set of SeVs N/
(and thus the index of epoch b is omitted).

Lemma 2: When the candidate SeV set is not time-varying,
and the input data size is identical over time, the learning regret
can be bounded from above as:

OpInT

Dln,a)’ .

RT Z ToUm
n#a*

where D(n,a*) is the Kullback-Leibler divergence of the bit
offloading delay distributions of SeV n and optimal SeV a*.

Proof: With fixed SeV set and identical input data size, the
proposed ALTO algorithm reduces to the classical UCB algo-
rithm. According to [30], Theorem 5, when " — +o0, the num-
ber of tasks offloaded to a suboptimal SeV n can be bounded as
follows

InT
Elkrn] > =—=-
ol 2 D)

Substituting (35) into (26), the learning regret Ry can be
bounded as

RT = ToUm Z 571E[kT,n] > ToUm Z
n#a* n#a*

(35)

O, InT
Doy O

APPENDIX E
PROOF OF THEOREM 3

The proof of Theorem 3 follows the similar idea in [19],
while the major difference is that the two SeVs appear at ¢; and
t, respectively. Let ¢y = max{¢;,t,}. We only needs to bound
the learning regret in the second epoch, from time ¢ to time 7.

We first bound the number of tasks offloaded to the suboptimal
SeV.
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Lemma 3: With periodic input of tasks and fixed bit offload-
ing delay of SeVs,

Int
<A

Proof: First, (37) holds for t = to and to + 1. For ty > ¢y +

2, we prove the lemma by contradiction. For simplicity, we use

k¢ o rather than k;z) If (37) does not hold, there exists at least

one 7 > to + 2, such that

(37

In(7 — 1
boa < BRTZD (38)
Int
ko > 5°A2 +1. (39)

Since InT > In(r — 1), SeV 2 is selected at time 7.
According to the utility function in (15), when z; = €,

Thus A = 2t o L J8ln(r-t) < \/i[ﬁlji, and k.o <

H2 M2 kr_12
ﬁOAh;T . Then kT,Z < k.r,]’z +1< ‘ﬁoAhle + 1.

Similar proof can be carried out when z; = 1 — ¢;. Thus we
prove Lemma 3. u

Then we prove that the proposed ALTO algorithm can explore
sufficiently, such that when the input data size is large, it always
selects the optimal SeV 1.

Lemma 4: With periodic input of tasks and fixed bit offload-
ing delay of SeVs, there exists 77, such that a; = 1 whent > T;
and x; = 1 — €.

Proof: First, define an auxiliary function

-2

_ ﬂo hl(zt - tz)

2060 In2¢
At) = 2= 1+ boIn

A2t — 1 —tp) ;@D
and f(t) = ftfo min(h'(s), 1)ds + h(to). We prove that ky; o >
f(t). Tt is easy to see that ky;» > f(t) holds when t =t
and to + 1. Assume that there exists 7 > to + 2, such that
kagr—1y2 = f(T — 1), but kyr» < f(7). Since f(7) — f(7 —
1) = [T min(K(s), 1)ds < 1,and ka(, 1) 2, kar 1,2, ka7 2 are
integers, we have ko _1)0 = ko; 1,2 = ka7 2. Thus SeV 1is se-
lected at time 27.

When ¢ = 27, x; = €. According to the utility function in
(15), we have

. ﬁ ln(27' - tz) . (42)
kar—12
Thus
A _ M2 — My Z ﬁo IH(ZT — tz) _ ﬁo IH(ZT — t1> . (43)

12 ka1 For 11

When 7 is sufficiently large, k>, —11 > (27 — 1 — t()/2. Then

26 In(27 —
_ 2@ =) gy
2T*17t0

At BoIn(21 — t5)

H2 k27—1,2
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Andthus ky; o = kar—12 > h(7) > f(7), which contradicts the
assumption.

Therefore, ky » > f(t) holds for any ¢ > ¢.

When x; = 1 — €1, tisodd. Let t = 27 + 1, the utility func-
tion of SeV 2 is

BerIn(21 + 1 — tp)
(1 —€o)korn

Ut = Up—1,2 —

BerIn(2T + 1 — tp)
(1 —e0)f(7)

Note that ':% > 1. There exists T}, such that when ¢ > T,

(45)

> 2 —

W < ﬁ: 1;‘0. Therefore,
P BerIn(27 + 1 —t,)
t,2 = 2 (1 —€0)f(7)
Ber AZ1—¢
o il
H2 (1-e) Bo e

=y — Pl = g > gy, (46)

which indicates that SeV 1 is selected. Thus Lemma 4 is
proved. ]

Finally, by letting 3y =2 and combining Lemma 3 and
Lemma 4, Theorem 3 can be derived.
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