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Abstract—Base station sleeping is an effective way to reduce
the energy consumption of mobile networks. Previous efforts
to design sleeping control algorithms mainly rely on stochastic
traffic models and analytical derivation. However the tractability
of models often conflicts with the complexity of real-world
traffic, making it difficult to apply in reality. In this paper, we
propose a data-driven algorithm for dynamic sleeping control
called DeepNap. This algorithm uses a Deep Q-network (DQN)
to learn effective sleeping policies from high-dimensional raw
observations or un-quantized systems state vectors. We propose to
enhance the original DQN algorithm with action-wise experience
replay and adaptive reward scaling to deal with the challenges in
non-stationary traffic. We also provide a model-assisted variant
of DeepNap through the Dyna framework for inferring and
simulating system dynamics. Periodical traffic modeling makes
it possible to capture the non-stationarity in real-world traffic
and the incorporation with DQN allows for feature learning and
generalization from model outputs. Experiments show that both
the end-to-end and the model-assisted version of DeepNap outper-
form table-based Q-learning algorithm and the non-stationarity
enhancements improve the stability of vanilla DQN.

Index Terms—Base station sleeping, deep reinforcement learn-
ing, deep Q-network, non-stationary traffic.

I. INTRODUCTION

THE explosive growth of mobile data usage has trig-
gered an accelerating expansion of the mobile network

infrastructure over the past few years. As a consequence, the
network energy consumption has surged dramatically, raising
both economic and environmental concerns. This necessitates
the adoption of more energy-efficient network architectures
and operations. Previous studies reveal that base stations (BSs)
are responsible for 60% − 80% of the total network energy
consumption [1] and BS traffic load is less than 1

10 of the peak
value for 30% time of weekdays [2]. This motivates dynamic
BS sleeping operations, in which BSs are automatically turned
into a low-power sleep mode when the traffic volume is low.
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BS sleeping can operate on various time-scales: slow sleep
cycles are usually in minutes to hours while fast ones in
seconds to minutes [1], [2], [3] . Fast sleeping operations
can better leverage fine-grained traffic variations but need to
carefully balance the tradeoff between energy savings and QoS
degradations such as delay and outage. Queueing theory is a
widely used analytical framework for studying such tradeoffs
[4], [5], [6], [7]. To guarantee the tractability of analysis,
previous work relies heavily on idealistic assumptions such
as Poisson traffic models and threshold-based scheduling.
However, real-world traffic are often more complex than
Poisson models due to phenomenons such as self-similarity
[8] and non-stationarity [9], and more delicate and model-free
scheduling method may bring better sleeping gain. In fact,
BS sleeping control problem manifests a sequential decision-
making process: the sleeping controller observes past and
current states of the system, e.g. traffic load and queue length,
and decides the sleeping state of the BS. The control decisions
are then carried out on the system and influences the uses
network usage behavior and traffic pattern, driving transitions
of system states, and invoke further sleeping control. Rein-
forcement learning (RL) is a widely-used framework to tackle
complex sequential decision-making problems, and thus it is
suitable for BS sleeping control, especially under real-world
traffic that simple model cannot precisely describe.

Recently, deep learning has achieved significant break-
throughs in computer vision, speech recognition, and natural
language processing [10]. It is also demonstrated in [11], [12],
[13] that deep learning can help RL algorithms learn sequential
control tasks in an end-to-end fashion. Deep learning and other
data-driven methods have also been proposed for various chal-
lenging communications problems [14], [15], [16], [17], [18].
These advancements motivate us to use deep reinforcement
learning to learn effective BS sleeping schedules.

In this paper, we propose DeepNap, a dynamic BS sleeping
control algorithm based on deep reinforcement learning. Deep-
Nap leverages a Deep Q-network (DQN) [11], [12] to learn
energy efficient sleeping control policy from high-dimensional
raw observations or system belief vectors. To address the
issues of applying the original DQN with the non-stationarity
of network traffic, we propose the following enhancements
for DQN training: 1) Under non-stationary traffic, the replay
memory may be dominated with experiences from the current
traffic phase and produce biased samples. This can cause
coupling among network outputs and trap DQN in sub-optimal
policies. To avoid this, we employ action-wise experience
replay to balance the amount of samples from different
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Fig. 1. RL formulation of BS sleeping control. The controller (C) servers
as the agent, while the traffic emulator (E), traffic server (S), and reward
combiner (W) together serve as the environment.

traffic phases. 2) The rewards received from mobile networks
often have large and unknown dynamic ranges. Naive reward
clipping may lose much information encoded in the magnitude
of rewards. We apply adaptive reward scaling to adaptively
rescale the received rewards to match with the response range
of network outputs.

To facilitate the incorporation of domain knowledge, Deep-
Nap can also work in a model-assisted manner. A traffic
modeling module iteratively fits a Interrupted Poisson Pro-
cess (IPP) [19] using the Baum-Welch algorithm [20] and
then predicts the next traffic belief state. The DQN can
subsequently uses the belief state vector to make decisions
or learn better sleeping policies. Since the traffic model is
learned in an online fashion, it can capture more complex
traffic dynamics (e.g. non-stationarity) than a model with
static parameters; Compared with table-based Q-learning and
analytical derivation, DQN also makes it possible to use un-
quantized belief state and avoids the information loss due to
quantization; We also incorporate planning architecture into
the learning process through the Dyna framwork [21], in which
pseudo state transitions generated from the learned traffic
model are used alongside real transitions during DQN training.

We evaluate DeepNap using an data-driven network emu-
lation framework called DragonEye [22]. Results show that
DeepNap outperforms the baseline table-based Q-learning
algorithm with a large margin. We also observe improved
stability compared with DQNs without action-wise experience
replay and adaptive reward scaling. The usage of a learned
traffic model and pseudo experience also brings slight im-
provements over end-to-end DQN learning.

The rest of the paper is organized as follows. Section II
provides the system model and some preliminaries of the deep
Q-network. The proposed deep learning-based BS sleeping
algorithm is introduced in Section III. Extensive experiment
results are presented in Section IV. Related work and conclu-
sions are summarized in Section V and VI respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. BS Sleeping as a Reinforcement Learning Problem

To formulate short-term BS sleeping control as an RL task,
we abstract the system as a collection of four components as
illustrated in Fig. 1: a traffic emulator (E) which encapsulates

the behavior of traffic sources, a traffic server (S) which serves
as the data plane of the BS, a sleeping controller (C) which
is the control plane of the BS and directs the operation of the
data plane, and a reward combiner (W). The correspondence
between an RL agent and the controller C is quite obvious.
Meanwhile, the RL environment is the collection of E and S as
well as the reward combiner W. In each round of interaction,
E first generates traffic for S, which then prepares observations
for C and receive control commands. Afterwards, S wakes up
and serves the traffic or sleeps based on control commands.
Depending on the service, E emits a scalar reward to measure
the service quality and S also emits a scalar to quantify the
operation cost. These rewards are summed up by W and passed
back to C. Note this formulation is intended for the short-term
BS sleeping control.

B. Deep Q-Network (DQN)

Q-learning [23] is a model-free RL algorithm. It leverages
the Bellman iteration to estimate the action-value function

Q(i+1)(s, a) = r + γmax
s′

Q(i)(s′, a′))

where s is the state, a is the action taken, r is the reward, s′ is
the next state, and max is the maximum operator. Once the op-
timal action-value function Q∗(s, a) is estimated, the optimal
policy can be explicitly expressed as a greedy procedure over
the optimal action-value function π∗(s) = argmaxaQ

∗(s, a),
where argmax gives the argument that results in the maximum
value in the given function.

Q-learning requires every state-action pairs be visited suf-
ficiently often and the values separately stored. However,
this point-wise estimation and representation of the action-
value function is unpractical because the state space of most
interesting problems are high-dimensional. As a solution, one
can learn a parametrized approximate of the action-value
function Q(s, a;θ) ≈ Q∗(s, a) instead. A deep Q-network
(DQN) [11], [12] uses a deep neural network as the action-
value approximator. DQN can be trained by minimizing the
mean-squared temporal difference

L(θ(i)) = E
[
(y(i) −Q(s, a;θ(i)))2

]
(1)

with gradient-based optimization methods, where

y(i) = E
[
r + γmax

a′
Q(s′, a′;θ(i−1))|s, a

]
(2)

is the target.
Three techniques are proposed to stabilize the training

procedure. 1) a replay memory stores certain amount of past
transitions. A random batch of experiences is sampled from
the replay memory in each training step as a bootstrapped
estimation of the true distribution. 2) a separate network with
stale parameters is used to generate the target Q values, in
order to avoid unwanted oscillations and divergence. 3) the
reward is clipped to [−1,+1] range.
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C. Prediction and Learning of IPP Models

An IPP model [19] is a Poisson-emission hidden Markov
model with two hidden states {s1, s0}, one of which (say s0)
has zero emission rate. IPP models can be used to model
bursty traffic and is commonly used to model network traffic in
existing studies on the BS sleeping problem [7]. The formal
definition of an IPP model is as follows: assume transition
probabilities P10 and P01, and emission rate λ, the belief of
next state can be derived with one-step forward prediction
following the Markov property

Pr{s(t) = s1} =(1− P10) Pr{s(t−1) = s1}+
P01 Pr{s(t−1) = s0}.

(3)

The parameters of an IPP model can be learned from
a sequence of traffic O = {o1, · · · , oT } using the Baum-
Welch algorithm [20]. This algorithm first estimates sufficient
statistics

ξij(t) = Pr{s(t) = i, s(t+1) = j | O}, (4)

γi(t) = Pr{s(t) = i | O}, (5)

ζ(t) = ot · Pr{s(t) = s1 | O}, (6)

based on old model parameters using the forward-backward
inference algorithm. These sufficient statistics are then used
to calculate the new maximum-likelihood estimate of model
parameters:

Pr{s(1) = i} = γi(1), (7)

Pij =

∑T−1
t=1 ξij(t)∑T−1
t=1 γi(t)

, (8)

λ =

∑T
t=1 ζ(t)∑T
t=1 γ1(t)

. (9)

III. PROPOSED ALGORITHM

In this section, we elaborate the design of DeepNap. We
first explain the problems with naive experience replay and
reward clipping to motivate the action-wise experience replay
and adaptive reward scaling enhancements for DQN. Then we
describe the environment model and how it can be incorpo-
rated with DQN through the Dyna framework. After that, we
present the overall DeepNap algorithm.

If the environment is non-stationary, naive experience replay
can become problematic. Shown in Fig. 2 is an example taken
from our experiment with the original DQN algorithm. The
top curve shows the average number of requests per time step
smoothed over one-minute time windows. The traffic pattern
is clearly non-stationary. Driven by the traffic variation, the
experience distribution in the replay memory (middle curve)
oscillates between waking- and sleeping-dominating regimes.
Since the loss in (1) is related with one action (thus one
network output) per sample, only a single network output
can be updated in these dominating regimes, and the other
“free-running” output may drift away from its expected value.
For example, observe in the beginning of the experiment,
the memory is dominated by waking experiences, thus the Q
value for the “free-running” sleeping action drifts to around

Fig. 2. Experimental results for the original DQN algorithm. The figures
show the number of requests per time step smoothed over a one-minute time
window (top), the percentage of experiences with waking and sleeping action
in the replay memory (middle), and the average Q values for waking and
sleeping actions over one-minute time window (bottom). The data used is
taken from Sep 25 to Sep 26, 2014. For more details about the dataset, please
see Section IV.

−1. It is only until 16 : 00 that the dominance of waking
experience got broken by random exploration and the Q value
for sleeping action starts to amble towards the expected 0
value. The balance is once more broken by the traffic peak
at around 23 : 00, with sleeping Q values again pushed to
around −1.

A. Action-wise Experience Replay

We propose to use an action-wise memory to address the
above problem. To balance the sample action distribution,
we store experiences with different actions into different
memory buffers, and sample experiences of different actions
with equal probability during training phase. This technique is
motivated by the observation that non-stationary environments
tend to drive the experiences in memory to switch between
the dominating regimes of a single action. By storing and
sampling experiences action-wisely, this action imbalance can
be alleviated. In essence, action-wise experience replay tries
to separately store experiences from different phases of a non-
stationary environment, so that the the agent is less prone to
overfitting to one particular phase.

B. Adaptive Reward Scaling

In mobile networks, the traffic volume of peak and off-
peak periods may differ by one or two degrees-of-magnitude,
and traffic-related reward components may consequently have
extremely large dynamic range. Meanwhile, the reward mag-
nitude is clipped to [−1,+1] in the original DQN algorithm.
In this way, the information encoded in value ranges outside
of this clipping threshold is totally thrown away.

Reward rescaling is a straightforward solution for this issue.
Appropriate scaling can bound the re-scaled action values
to within the saturated range of network outputs. Even if
the action-value function for some state-action pairs have
extremely large magnitudes and cause saturation in network
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Fig. 3. Q values of waking and sleeping actions smoothed over one-minuted
time window with fixed reward scaling factors of 1, 20, and 1000.

outputs, the policy will not be affected if the maximum action
value is still maximum. However, choosing an appropriate
scaling factor in unknown environments is no trivial task. On
one hand, small scaling factors cause saturation on multiple
outputs and the value of corresponding actions are confused
(bottom chart in Fig. 3). It can also cause vanishing gradients
and in turn hamper the training process. On the other hand,
large scaling factors may create a fake local minima by
squeezing action values to zero (top chart in Fig. 3).

To automate the search for an appropriate scaling factor, we
propose the adaptive reward scaling procedure. Specifically,
we revise the loss function as

L′(θ(i)) = E
[(
y′(i) −Q(s, a;θ(i))

)2
+ U(Q(s, a;θ(i)))

]
,

(10)
where y′(i) = r

R(i) + γmaxa′ Q(s′, a′;θ(i)−) is the rescaled
target at iteration i by a scaling factor R(i) > 0 and

U(Q) =
κ

(Q− 1− δ)2
+

κ

(Q+ 1 + δ)2
(11)

is a U-shape saturation penalty, κ is a small constant to keep
the penalty small in non-saturated regions, and δ is a small
positive offset to bound the penalty value in saturated regions.
The adaption process starts with a small scaling factor, e.g.
R(0) = 1. After every S updates for θ, we update the value of
R(i) using gradient-based method towards reducing the loss
in (10).During this process, the U-shaped penalty serves the
purpose of pushing the output of saturating samples slightly
in-wards (Fig. 3(c)), guaranteeing a non-diminishing gradients.

Intuitively, the proposed method guides a scheduled search
for an appropriate R(i) starting from a small value. In each
search cycle, if the true action-value function is larger than the
scaled output, the loss will swell due to output saturation. In
such a case, the loss can be reduced by increasing the scaling
factor R(i). This increase of R(i) will gradually slow down
when the output range catches up with the true action-value.

C. Environment Models and Dyna Integration
The core of our environment model is a learned IPP. Since

the traffic is non-stationary, we make use of an online Baum-

Welch algorithm to adapt model parameters to changing traffic
patterns. Specifically, we keep the most recent W traffic
observation during training and fit new model parameters with
these observations every M time steps. We only apply three
EM iterations each time to avoid overfitting to the short traffic
window. In addition to the traffic belief state, the system state
also contains the queue length in current and the latest time
step as well as the latest sleeping action. The transitions of
these additional state components is deterministic: new traffic
arrivals are all enqueued if last action is to sleep while the
queue is served and cleared if the last action is to wake up.

We apply the following rewarding scheme to favor imme-
diate service and sleeping operations in low-traffic periods. In
each time step, E emits +Rs reward for each served request,
−Rq for each queued or retransmitted request, and −Rf for
each failed requests. At the same time, S emits −Co if the
action is wake up and a −Cw switching cost if the current
action differs from the last one. The overall reward is derived
by a weighted average of these rewards:

ri =w(Rs −Rq −Rf )

− (1− w)(Co + Cw · 1{ai−1! = ai}).
(12)

Dyna [21] is an effective framework to integrate model-
free learning and model-based planning in RL systems. We
employ the DynaQ variant [24] to intergrate the environ-
ment model with DQN. Concretely, in each time step, we
generate multiple pseudo experiences with the environment
model. These simulated experiences are stored into the replay
memory along with real experiences and used indiscriminately
for training. Note all the above reward components can be
calculated determinsitically excepte the traffic failure penalty
−Rf , which requires finer traffic information than what the
IPP model can provide. Thus we omit this component when
generating pseudo experiences.

D. Putting Them All Together
The overall procedure of DeepNap is summarized in Algo-

rithm 1. We periodically fit an IPP-base environment model
with lateset traffic observations and use the filtered systems
state as input for DQN. We use a feed-forward neural network
as the DQN. Network weights are initialized with the Glorot
initialization method [25]. We train the network periodically
with mini-batches of samples taken from the action-wise
replay memory and synchronize the parameters of the target
Q network with a longer cycle. Besides, we also periodically
update the scaling factor R(i). In the original DQN training
procedure, experiences in the latest sliding window of length
P are stacked as a extented observation vector

φ(st) = (at−P , st−P+1, at−P+1, · · · , st).

DeepNap supports such a function for raw observations but
keeps P = 1 when observations are filtered as system belief
states.

IV. EXPERIMENTS

In this section, we present the experiment results. The code
and data used in experiments are publicly available at
https://github.com/zaxliu/deepnap.

https://github.com/zaxliu/deepnap
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Algorithm 1: Pseudo-code of the DeepNap learning algo-
rithm.

1 Initialize the network emulator as the environment.;
2 Initialize a traffic buffer B and a traffic model. ;
3 Initialize a value network and its target network with

random weights. ;
4 Initialize an action-wise replay memory Ma. ;
5 Repeat
6 Push observation o into traffic buffer B;
7 Infer system state s ;
8 Select a following ε-greedy policy;
9 Feed a into the network emulator and observe o′ and

r;
10 Every M steps do Fit new traffic model with

current B ;
11 φ′ ←PHI(s′) ;
12 Simulate N pseudo experience (φ̂, â, r̂, φ̂′);
13 Update memory Ma with both real and simulated

experience (φ, a, r, φ′);
14 For 1 to N + 1 do
15 Every U steps do
16 Sample a mini-batch uniform randomly from

all action-wise memories {Ma};
17 Update network parameters θ;
18 Every F steps do Sync. target network. ;
19 Every S steps do Update scaling factor R ;
20 End
21 End
22 s← s′ , φ← φ′;
23 Until finished();

TABLE I
FORMAT OF THE DATASET USED IN EXPERIMENTS.

Field Content Example
uid user ID 41117355
bldn building name Dining Hall 1
start session start time (Unix) 1409500812697
dur session duration (ms) 295551

dmns domain list [a.com, b.net]
prvdr domain providers [Tencent, Apple]
types domain categories [Portal, Shopping]
bytes bytes/domain [8500, 341]
reqs HTTP requests/domain [5, 1]

A. Network Emulator and Dataset

We use the trace-driven network emulation framework
DragonEye [22] as the test environment for the DeepNap
agent. The trace we use is captured from a campus WLAN
from September 2014 to January 2015. It contains the session-
level HTTP traffic summaries of around 20, 000 users1.Each
record summarizes the per-domain HTTP activity of each user
during each session with the following fields: session ID,

1Here “session” is defined as the period in which a user generates HTTP
requests and pauses for less than 5 minutes each time. If the user pauses
longer, the subsequent requests will be summarized into the following session.

TABLE II
PARAMETERS AND DEFAULT VALUES

Params Value Description
P 15 length of φ(·)
|Ma| 200 size of each action-wise memory
W 50 traffic window size
R 1.0 initial reward scaling value
N 5 # simulated experience per step

M 2 model fitting period
U 4 SGD update period
F 16 target network synchronization period
S 32 reward scaling update period

Rs 1 service reward
Rq 1 queueing cost
Rf 10 timeout penalty
Co 5 BS active mode cost
Cw 0.5 switching cost
w 0.5 reward combining weight

T 7 # days of the testing period
∆T 2s duration of each time step

user ID, building name2, start time (UNIX time), duration
(milliseconds), a list of the requested domain names as well
as the corresponding provider, domain type, the total number
of HTTP requests and bytes requested at each domain. Ex-
planations and examples for record fields are summarized in
Table I.

DragonEye requires us to make the following assumptions
to mitigate the imperfection in the dataset:
• Virtual large cell: the network trace we use only contains

building-level location information. To cope with the un-
certainty of user location at sub-building level, we assume
all the users in a physical building are served by a large-
coverage BS instead of multiple small-coverage APs.
This assumption is inspired by the fact that the actual
geographical layout of the buildings involved are rather
far apart and the size of a single building matches the
coverage size of a typical cell in cellular communication
systems.

• Byte and epoch allocation: we assume a uniform3 byte
and epoch allocation model to translate coarse session-
level summary to fine-grained request description. Ac-
cording to this model, each byte in a session is assigned
to each request of that session with equal probability,
and each request is assigned to an epoch within that
session with equal probability too. This essentially results
in a multinomial byte-per-request and request-per-epoch
probability distribution.

• User and network state machines: we model the reac-
tion of users and the network using state machines. At
the user side, the transmission of each request follows the
state machine. All requests are initialized as “pending”
and remain there before being transmitted. If a request
should be sent out in a particular epoch, its state is
modified to “waiting” and starts transition according to
the service received: if this request is successfully served,

2More detailed knowledge of user location is hidden to preserve user
privacy.

3Note that any other distribution could also be used.
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its state is then changed to “served” and transition is
terminated; if otherwise it is queued, its state remains
at “waiting”. All “pending” and “waiting” requests are
also tagged as “failed” after the last epoch of a session.
The network-side state machine is relatively simple. In
each epoch, S first puts all incoming requests in a request
queue. If the control command received is “serve”, then
all queued requests will be served and queue cleared;
otherwise if the command is “queue”, the queued requests
remain in the queue for the next epoch.

B. Parameters

We use a 0.9 discount factor and 0.02 exploration probabil-
ity for the DeepNap agent. The DQN has a input dimensions
of 3 (system states) or (3 + 2) × P (raw observations) and
output dimensions of 2. The network has two hidden layer,
each with 500 units with ReLU activation, and a output
layer uses with tanh non-linearity. The weight and offset of
saturation penalties are respectively κ = 10−5 and δ = 10−2.
Network parameters are optimized using mini-batch Nestrov-
momentum updates with 0.9 momentum, 10−2 step size, and
100 batch size. The default value for other hyper-parameters
used in our experiments are listed in Table. II.

C. Learned Sleeping Patterns

Fig. 4 shows the basic characteristics of the sleeping patterns
learned by a DeepNap agent. The top chart (a) shows the
traffic variations during this period. The traffic volume peaks
and valleys with regular temporal pattern, but local random
variations is also present. Chart (b) shows the percentage of
waking time steps in each one-minute interval. This waking
pattern is the result of the learned action-value function as
shown chart in (c). Following this sleep pattern, the BS gains
rewards much faster than with the baseline always-on policy
as shown in chart (d). Here sleeping gain is defined as the
time averaged per-step reward.

As shown, the BS is almost always turned on during peak
periods and seldom turned on during off-peak periods. In the
transition regions between peaks and valleys, the agent issues
mixed waking and sleeping operations. As the third case is
more complex, we mainly focus on this case. We take two
2-minute time intervals and visualize the policy in finer detail
in Fig. 5. For interval (a), the policy is roughly to gather
more than two requests through queueing and serve them all
together. This policy can help reduce the operational cost per
request in intermittent traffic conditions as in (a). In interval
(b), the traffic becomes more intensive (but still light compared
to peak hours) and the agent adapts its policy to wake up the
BS more aggressively. This new policy fits the current traffic
condition better because the waiting cost may over-weigh the
operating cost when the traffic becomes less intermittent, and
therefore it is more beneficial to provide immediate service.

D. Algorithm Comparisons

We compare the performance of different algorithm con-
figurations and the results are summarized in Table III. The
investigated algorithms include:

TABLE III
TIME-AVERAGED PER-STEP REWARDS OF THE BASELINE ALWAYS-ON
POLICY AND RELATIVE SLEEPING GAIN OF DIFFERENT ALGORITHM

CONFIGURATIONS IN SIX DIFFERENT LOCATIONS.

Algorithms Locations
dh3 dsy dmW mhC mdB gym

Per-step reward
Baseline -3.96 +2.49 -4.71 -4.28 -2.91 -4.42

Gain above baseline
QL-d 3.280 1.384 3.678 3.014 2.695 3.420

DQN-m 3.443 1.616 3.898 3.228 2.673 3.578
DQN-d 3.490 1.879 3.912 3.242 2.875 3.617
DQN 3.481 1.903 3.880 3.238 2.863 3.600

• Baseline: the always-on policy agent.
• DQN: enhanced DQN using stacked raw observations.
• DQN-m: enhanced model-assisted DQN using continu-

ous belief states.
• DQN-d: enhanced model-assisted DQN using continuous

belief states and Dyna simulation.
• QL-d: table-based Q-learning agent using quantized be-

lief states and Dyna simulation.

We calculated the time-averge per-step reward of each algo-
rithm over the last 6 days of the experiment. Reward values
are further averaged across at least 10 emulation runs. The
improvement over the baseline performance is used as the
metric for comparison.

As can be seen, deep reinforcement learning based con-
figurations (DQN, DQN-m, DQN-d) consistently outperform
table-based ones (QL-d) across all test cases. Note the only
difference between DQN-d and QL-d is the presence of DQN.
This demonstrate the advantage of deep reinforcement learning
over table-based Q-learning. Due to the curse of dimension-
ality, table-based methods generally learn faster and better
with small spaces. Fig. 6 corroborates with this argument,
showing that QL-d performs better with more aggressive state
quantization. In contrast, DQN-m and DQN-d can learn with
un-quantized or lightly quantized state representations, and
therefore avoids the information loss.

Interestingly, DQN-d performs slightly better than DQN in
5 out of 6 test cases. The performance gain may be con-
tributed by two factors. Firstly, DQN-d leverages the domain
knowledge through the IPP traffic model to extract more state
from observations. In comparison, DQN has to learn such
features end-to-end from raw observations, which should be
much harder and slower. Second, DQN-d can use the learned
environment model to generate pseudo experiences and train
the DQN with more data. As shown in Fig. 7 the simulated
experience can indeed help with the learning process.

Of course, the effectiveness of simulated data relies on the
correctness of the learned model. We investigate the fitness
of IPP model under real network trace in Fig. 8. See in the
top chart, the learned traffic rate matches closely with the
varying traffic volume. And also observe in the middle chart,
IPP model can seamlessly fall back into a Poisson process
in peak (with P11 = 1) and silent periods (with 0 emission
rate). We also compare the observed and expected per-step data
likelihood of the learned model as a quantitative goodness-of-
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Fig. 4. Sleeping patterns of the DeepNap agent. (a) number of requests
generated in each time step, (b) percentage of waking time steps, (c) Q
values for waking and sleeping actions, (d) sleeping gain above the baseline
always-on agent. All values are smoothed over one-minute time windows.

Fig. 5. Policy visualization for two time intervals (a) and (b). Top charts
show the number of request arrivals and the queue length in last time step,
which constitute the observations. Bottom charts show the Q values for
waking and sleeping operations and the corresponding action.

Fig. 6. Sleeping gain verses number of quantized belief state bins for QL-d
at location dmW.

Fig. 7. Sleeping gain verses the number of simulated experiences for DQN-d
at location dmW.

fit measure. As can be seen in the bottom chart, these two
values roughly overlaps for most of the time, which proves
that IPP is an appropriate model for the trace we use.

On the flip side, the slight performance improvement of
DQN-d over DQN comes at a price. The model fitting
and pseudo experience generation process incurs additional
computational complexity for the algorithm. In resource con-
strained settings, it is reasonable to question whether these
additional expenditures can be justified with such small per-
formance gain. Also, the IPP model can also be wrong in

Fig. 8. Fitting results of the IPP model. Top: traffic and learned emission
rates.; Middle: estimated transition probabilities; Bottom: Per-step likelihood
values.

other settings, calling for case-by-case model verification. In
contrast, end-to-end DQN is model-free and can be straight-
forwardly applied to diffrent scenarios.

E. Action-Wise Experience Replay

Fig. 9(a) shows the sleeping gain of agents with and
without action-wise replay memory. As shown, the agent
with action-wise replay memory achieves a higher sleeping
gain in the experiment. To better understand why action-
wise replay memory is helpful, we also show the traffic,
action distribution, and Q values during a short experiment
period in Fig. 9(b). Because we sample 1/4 of the memory
each time, this distribution should be close to the actual
action distribution in replay memory. Observe that the action
distribution of the uniform-memory agent depends highly on
the traffic regime. In traffic peaks and valleys, the distribution
becomes highly biased towards waking or sleeping actions,
respectively. The Q values for the minority action cannot be
properly estimated during these highly biased periods. For
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Fig. 9. Effectiveness of action-wise experience replay. (a) shows the time-
averaged sleeping gain using both uniform and action-wise experience replay.
(b) shows the number of request arrivals, batch distribution, and Q values for
uniform experience replay for w = 0.7.

Fig. 10. Effectiveness of adaptive reward scaling. (a) and (b) show the
sleeping gain with adaptive and fixed reward scaling. The discount factors
are 0.5 and 0.9. (c) shows the variations of the reward scaling factor, training
loss, and Q values during a short adaptation period.

instance before 11 : 00am, the traffic is high and the memory
is dominated by waking experiences. The training process
only tunes the waking Q value and leaves the sleeping Q
value unchanged, despite the fact that the action value for
sleeping should be small negative values in such high traffic.
In comparison, the agent with action-wise replay memory is
trained with balanced experiences and is less prone to such
problems.

F. Adaptive Reward Scaling

Fig. 10(a) and Fig. 10(b) show the sleeping gain of Deep-
Nap agents with different reward-scaling configurations and
discount factor values. The fixed scaling factor needs to be
carefully tuned to match with the different action value ranges
of different γ: small scaling factors cause network saturation
while large ones slow down the learning speed. In comparison,

Fig. 11. Energy-delay tradeoff with different reward combining weights w.
Smaller w values emphasize operational cost more, resulting in smaller energy
cost and larger delay.

the adaptive reward scaling scheme with an initial factor of
1 can achieve a sleeping gain that is close to or better than
the optimal fixed scaling factor regardless of the γ values.
Shown in Fig. 10(c) are the variations of the reward scaling
factor, training loss, and the estimated Q values during the
process of adaptation. Initially, the scaling factor is relatively
small and the rescaled reward is well beyond (−1,+1). In
consequence, the Q values are near saturation and the loss is
dominated by the large saturation penalty. In response to this
situation, the algorithm gradually increases the scaling factor
such that the rescaled rewards fall back to the (−1,+1) range.
The network output is driven away from the saturated region
and the penalty starts to diminish. The resulting loss is now
starting to be dominated by estimation error. The loss then
continues to drop as the action-value approximation becomes
more accurate, and the reward scaling adaptation process also
slows down.

G. Energy-Delay Tradeoff

A fundamental tradeoff in BS sleeping operations is the
energy-delay tradeoff: more aggressive sleeping operations can
save more network energy but at the expense of extra latency
to the requests due to queuing In practice, it is very important
flexibly balance these two conflicting interests to match the
different preference of network operators and mobile users.
The DeepNap agent can achieve such tradeoff by choosing
different combining weights w for the traffic rewards and
operational costs. Fig. 11 shows the average request delay and
energy cost with different w. The figure shows that the policies
learned by DeepNap trace out a monotonic tradeoff curve as
the weight parameter w is increased.

V. RELATED WORK

BS sleeping has long been identified as an effective ap-
proach to save system energy. Previous efforts to derive the
optimal sleeping control policy have mainly adopted a model-
based approach. For the simplistic setting of Poisson traffic
arrival and exponential service time, the double-threshold
hysteretic policy has been proven to be optimal [26], [27].
For more general traffic and service patterns, the double-
threshold policy is not guaranteed to be optimal, still it is
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often used as a baseline [6], [7]. When the optimal policy
cannot be derived closed-form, it can be calculated numeri-
cally using value iteration methods under the Markov Decision
Process (MDP) framework [28]. In contrast to these model-
based previous works, DeepNap does not assert a fixed traffic
model and learns an appropriate model in process, allowing
it to adapt to varying traffic patterns. Besides, the end-to-end
DQN configuration also provides a model-free method for BS
sleeping operations.

In the broader context, RL has been widely applied to
cognitive radio systems. Medium access control, resource
management, and routing has also been formulated as RL
problems in addition to node sleeping operations [29], [30],
[31]. Among the common algorithms used to solve these
problems, Q-learning is especially favorable due to its model-
free nature. However, most previous work uses the canonical
table-based Q-learning algorithm. But due to the curse of
dimensionality, the possibly high-dimensional and continuous
state space has to be reduced to a few discrete heuristic
values. In comparison, DeepNap allows for high-dimensional
and continuous states through value function approximation.
Perhaps the most similar prior work to DeepNap is [32],
in which a neural network is used to approximate the Q
function for an interference control task. However, many of
the important components, e.g. action-wise experience replay,
and adaptive reward scaling, is not adopted [32].

DQN has been successfully applied to tackle problems
in multiple domains, e.g. playing video games [11], [12],
playing chess [13], and understanding human language [33].
DeepNap provides an additional application for this powerful
framework. On top of the original DQN proposal, we also
propose two new techniques, i.e. action-wise replay memory
and adaptive reward scaling, to cope with non-stationary
environments. Recent advances in this line is Prioritized
Experience Replay [34], which samples experiences with
non-uniform probabilities related to update losses. But this
method is still not fit for non-stationary traffic, due to the
same “memory dominace” phenomenon as uniform experience
replay. In contrast, action-wise experience replay is specifically
designed to cope with non-stationary environments. Moreover,
the original DQN applies reward clipping to deal with the
output range problem. Instead of clipping, we propose to
adaptively find an appropriate scaling factor for reward values.

VI. CONCLUSIONS

In this paper, we propose a data-driven algorithm for dy-
namic base station sleeping control using deep reinforcement
learning. In face of the non-stationarity in mobile network traf-
fic, DeepNap enhances the original DQN algorithm with two
modifications: action-wise experience replay for re-balancing
the action distribution in the replay memory, and adaptive
reward scaling for automatically searching an appropriate
output scale in unknown environment. The proposed algorithm
can also leverage the Dyna framework to incorporate an IPP
traffic model into the DQN algorithm. We test DeepNap
with real network traces and a data-driven network emula-
tion framework. Experimental results show that action-wise

experience replay and adaptive reward scaling improves the
stability and adaptivity of vanilla DQN. The presence of DQN
brings significant gain compared with table-based Q-learning
algorithm. Moreover, the integration of IPP traffic model and
the use of simulated experience also gives slight improvement
over end-to-end DQN at the cost of more computation. For
future work, more theoretical results from existing literature
can be incorporated into the proposed data-driven framework
to attain better performance.
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