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Abstract—In this paper, the wireless uplink is considered for
status update with a large number of terminals. Thy key problem
we address is that whether spatial multiplexing of multiple
terminals, enabled by the massive multiple-input multiple-output
technology, can help to improve the scaling law of age-of-
information versus the number of terminals, on account of the
mandatory pilot overhead. Based on a queuing theory analysis,
we show that the proposed elastic spatial multiplexing scheme,
which assigns an optimized pilot length that is smaller than the
number of transmitting terminals on account of random packet
arrivals, can indeed improve the scaling law compared with the
optimal scaling law without spatial multiplexing, by a factor that
is related to the packet lengths and arrival rates. Simulation
results are provided to validate our findings.

Index Terms—Internet-of-Things, age-of-information, massive
multiple-input multiple-output, queuing theory

I. INTRODUCTION

Internet-of-Things (IoT) is emerging to be one of the

revolutionary technologies of modern societies. In the foresee-

able future, machine-type communication (MTC) will replace

human-based applications (videos, texts) and dominant the

data traffic in wireless communication systems. In many

scenarios, the MTC involves terminals reporting status up-

date of sensory data, e.g., temperature, pressure and etc., to

destination nodes. One of the major challenges in designing

such systems is to achieve timely status update from terminals

and, meanwhile, still scalable in the massive IoT regime with

a large number of terminals.

In order to quantify the status update timeliness, age-of-

information (AoI) is recently proposed which denotes the time

elapsed since the last status observation [1], [2]. The AoI

jointly accounts for the information rate of status variation,

which is related to sampling rate at the information source,

and data communication delay, and hence distinguishes itself

from the conventional end-to-end (e2e) communication delay

metric, making it suitable to characterize the status update

timeliness in IoT systems. The study of AoI optimization

receives broad attention in the literature, including e.g., single-

queue analysis [1], multiple sources sharing one queue [3],

general service distributions [4] and scheduling problems with

multiple queues [5].

The considered scenario in this paper is shown in Fig. 1,

where a central node is receiving status update from terminals.

Our previous work [6] has shown that a round-robin policy can
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Fig. 1. System architecture. The left part depicts transmissions with spatial
multiplexing of all terminals; the right part is concerned with transmissions
without spatial multiplexing.

achieve the optimal scaling law in the massive IoT regime,

assuming that only one terminal can be scheduled at one

time; several other works also consider this problem and

propose near-optimal solutions based on, e.g., Whittle’s index

policies [7]–[9]. However, as far as we know, no existing

work has considered spatial multiplexing enabled by massive

multiple-input multiple-output (MIMO) technology [10] which

will play a pivotal part in future systems. Based on spatial

multiplexing, multiple terminals can transmit simultaneously

leveraging spatially orthogonal channels such that the system

scalability is significantly improved. However, on the flip

side, spatial multiplexing entails a mandatory pilot overhead

which is proportional to the number of terminals assuming

time-division-duplexing (TDD) operations. The question of

particular interest is that whether spatial multiplexing can

benefit the AoI performance, considering the pilot overhead.

In this paper, we show through theoretical analysis and

appropriate approximations that compared with the optimal

scaling result without spatial multiplexing, i.e., DN
2 where D

is the number of time slots consumed to transmit one packet

[6], the proposed elastic spatial multiplexing scheme (ESM)

can achieve an improved scaling law of δN
2β where δ < 1 is

related to status packet arrival rates and β ≥ 1 is related

to the physical-layer multi-terminal detection performance

(both defined formally in later sections). Considering the pilot

overhead, ESM allows all terminals to transmit pilot symbols

while only some of them may have status packets due to

random packet arrivals, and hence ESM can benefit from



spatial multiplexing by carefully designing the pilot length.

Notations: We use O(MN ) to denote polynomials of M
with order lower than N . The expectation operator is denoted

by E[·]. The k-th binomial coefficient is denoted by
(
N
K

)
. The

modulo operator is denoted by mod. The complementary error

function is defined by erfc(x) � 2√
π

∫∞
x

e−t2dt.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a single-cell cellular system wherein a base

station (BS), or central controller, equipped with M antennas

is responsible for collecting status updates from N termi-

nals, e.g., sensors and monitors. A time slotted system is

considered. The status updates are conveyed by randomly

generated packets at each terminal, reflecting the current

status information sensed by terminals and stored at terminal

queues. The packet arrivals are modeled by independently

identically distributed (i.i.d.) Bernoulli processes with mean

rates λn ∈ [0, 1], ∀n = {1, ..., N}. The status update packets

are transmitted in the wireless uplink, where each packet is

assumed to consume a constant of D (D ≥ 1) time slots to

be transmitted; this corresponds to the scenario that the status

packets are with constant lengths and retransmissions due to

channel failure are not considered. We adopt the AoI metric

as our main optimization target in this paper. Concretely, the

τ -horizon time-average AoI of the system is defined by

Δ(τ,N)
π � 1

τN

τ∑
t=1

N∑
n=1

E[hn,π(t)], (1)

where π denotes an admissible policy, τ is the time horizon

length, hn,π(t) denotes the AoI reported by terminal-n at the

t-th time slot under policy π and

hn,π(t) � t− μn,π(t), (2)

where μn,π(t) denotes the generation time of the status from

terminal-n maintained at destination at time t. In particular,

the long-time-average AoI of the system is concerned, which

is defined by

Δ̄π,N � lim sup
τ→∞

Δ(τ,N)
π . (3)

A. Optimal Scaling Law in Massive IoT without Spatial Mul-
tiplexing

Without spatial multiplexing, the uplink channel allows one

terminal to transmit at one time, i.e., the protocol interference

model is adopted which means that a collision happens when-

ever multiple terminals transmit simultaneously. The following

corollary based on our previous work in [6] states the optimal

scaling result with a massive number of IoT terminals and its

attainability by the round-robin scheduling policy with one-

packet buffers at terminals (only retain the most up-to-date

packets), referred to as RR-ONE and denoted by RR in the

subscript.
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Fig. 2. Pilot-aided spatial multiplexing in massive MIMO enabled uplinks.

Corollary 1: Assuming the protocol interference model

and that each transmission consumes D time slots, RR-ONE

achieves a long-time average AoI of

Δ̄RR,N =
1

N

N∑
n=1

1

λn
+

ND − 1

2
+D − 1. (4)

The optimal scaling law between the long-time average AoI

and the number of terminals in this scenario is

Δ̄opt,N =
DN

2
+ O(N). � (5)

Proof: The performance of RR-ONE can be derived

by a generalized Poisson-arrival-see-time-average (PASTA)

theorem, and the optimality of the scaling factor can be

proved by comparing RR-ONE to a AoI lower bound as in

[6, Lemma 3], with a straightforward extension to incorporate

the transmission time D.

Given the optimal scaling result without spatial multiplexing

in Corollary 1, the main problem to be addressed is: Can
spatial multiplexing achieve an improved scaling law in
the massive IoT regime? In the following subsection, we

will first describe the system model of spatial multiplexing,

and then present our main result in the subsequent sections.

B. Uplink Spatial Multiplexing

Thanks to the massive MIMO technology, uplink spatial

multiplexing of multiple terminals can be enabled, i.e, mul-

tiple terminals can transmit simultaneously and successfully

(collision-free) by performing joint spatial multi-terminal de-

tection at the BS side [10]. Since different terminals have

distinct channel state information (CSI) vectors which become

asymptotically orthogonal when M → ∞, their packets

can be efficiently decoded by estimating and exploiting the

CSI vectors as spatial signatures. Such a process can be

materialized by a pilot-aided uplink transmission scheme as

depicted in Figure 2.

A transmission frame consists of T time slots,1 among

which L time slots are dedicated to uplink pilots transmission

for channel training and the remaining D time slots are used

for data transmission; in this paper, we assume that by spatial

multiplexing, multiple terminals transmit in parallel and the

1In this paper, we assume that the channel coherence time is larger than T
and that the channel stays constant throughout one transmission frame.



resulting transmission time, i.e., D time slots, is the same as

the one occupied by a single terminal.2

However, there is a limit in terms of the number of spatial-

multiplexed terminals given the pilot length L; exceeding the

limit will result in unsuccessful channel estimations and hence

failure in the signal decoding. The characterization of the limit

is related to several key parameters and has been extensively

investigated in the massive MIMO literature. In summary, two

aspects play pivotal roles in determining this limitation:

• In a pure pilot-based scheme, the number of spatial-

multiplexed terminals, denoted by K, cannot be more

than L due to the fact that the CSI estimation process has

to solve for K variables given L linear equations [11].

Furthermore, it often requires K < L considering the

uplink channel noise and requirement of CSI estimation

accuracy for demodulation.

• In a data-aided pilot-based scheme (cf. [12], [13]), the

constraint of K < L can be relaxed by leveraging

received data to facilitate the CSI estimations. It is shown

that K can be larger than L, with low transmission failure

probability.

On account of these existing works, and without loss of

generality, we define the transmission success probability

given K and L as ps(K,L), that is, in the event that a

transmission is successful, all spatial-multiplexed terminals

update a packet; otherwise all updates fail since the signals

from terminals cannot be distinguished. Whereas the specific

physical-layer uplink CSI estimation and data transmission

scheme is of critical importance, this paper focuses on the

AoI performance analysis and hence the essence and net

effect of uplink transmissions are abstracted by ps(k, l). An

arbitrary function of ps(K,L) can be plugged into our result;

an exemplary ps(K,L) can be found in the recent work

considering massive connectivity in massive MIMO [13].

C. Status Update and AoI Evolution

It is crucial to clarify the status update procedure, which

includes deciding the following:

• Scheduled terminal set: Decide which set of terminals is

scheduled in the transmission frame.

• Packet management: Once scheduled, each terminal

transmits its associated pilot sequence and a status update

packet (if its queue is not empty) based on a packet

management scheme; the terminal stays silent if its queue

is empty.

Due to the fact that a newer status always renders an

older status meaningless, it is obvious that the optimal packet

management scheme is to transmit the most up-to-date packet;

this is equivalent to maintaining a one-packet buffer at each

terminal and only retains the newest packet. Secondly, the

number of scheduled terminals, denoted by S, is generally

2Existing work [10] has shown that such an assumption is approximately
satisfied in the massive MIMO uplink as long as the number of BS antennas
is larger than N .

larger than the number of transmitting terminals K, on account

of the fact that some terminals may have empty queues due to

random packet arrivals and these terminals would remain silent

even if scheduled. Consequently, to fully utilize the channel

and achieve the best performance, one should schedule more

terminals than the number of terminals the adopted pilot length

(L) allows considering random packet arrivals; this is referred

to as elastic spatial multiplexing. In particular, in this work,

we let all terminals be scheduled in each transmission frame

and design the optimal pilot length thereof.

The evolution of the AoI of terminal-n can be written as

hn,π(t+ 1)

=

{
hn,π(t) + 1, if tmodT �= 0;

hn,π(t) + 1− un,π(t)ps,π(t)gn,π(t), otherwise,

(6)

where un,π(t) = 1 denotes the terminal-n is scheduled in

this transmission frame and zero otherwise, the transmission

success probability is denoted by ps,π(t), and at the end of the

frame the AoI reduction is denoted by gn,π(t) which equals

the time duration (time slots) between the generation of the

last received packet from terminal-n and the updated packet’s

generation time. Note that gn,π(t) equals zero if terminal-n
has no packet to update.

III. ACHIEVABLE LONG-TIME AVERAGE AOI BY ELASTIC

SPATIAL MULTIPLEXING

In order to show that ESM can achieve better scaling result,

we only need to find one status update strategy that achieves a

scaling factor smaller than D
2 as in Corollary 1.3 Towards this

end, we consider the case that all N terminals are scheduled

in each transmission frame and try to find the appropriate pilot

length L; this scheme is denote by ESM.

In what follows, the long-time average AoI of ESM will be

derived.

Theorem 1: The long-time average AoI of ESM is

Δ̄ESM,N =
1

N

N∑
n=1

1

λn
+

1

N

N∑
n=1

2− cs,n(L, S)

2cs,n(L, S)
T +D − 3

2
,

(7)

where

cs,n(L, S) �
∫ +∞

−∞
qn(x, S,m)ps(x, L)dx,

qn(K,N, T ) �
(
N

K

)
(1− δn)

N−KδKn ,

δn � 1− (1− λn)
T . � (8)

Proof: See Appendix A.

3Clearly, this means that the proposed strategy in this paper is not
necessarily achieving the optimal scaling law which is left for future work.
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Fig. 3. Long-time average AoI for RR-ONE [6] and ESM with λn = 1/10,
∀n.

IV. CLOSED-FORM SCALING RESULT BY ELASTIC

SPATIAL MULTIPLEXING

Based on Theorem 1, the long-time average AoI can be

analyzed numerically given an arbitrary physical layer trans-

mission success probability function of ps(K,L). However,

this formula cannot provide a closed-form scaling result that

we desire. Hence, we will use an exemplary ps(K,L) to

derive an explicit scaling result. Specifically, we assume that

the physical layer transmission success probability is of the

following threshold-type form:

ps(K,L) =

{
1, if K ≤ βL;

0, otherwise,
(9)

where β ∈ (0,∞) is a constant irrespective with K and L.

That is, the success probability of physical layer multi-terminal

detection is one when the number of concurrent terminals is

smaller than β times the pilot length, and zero otherwise. This

threshold-based model is in fact validated by many existing

works (cf. [13]). Based on this model we obtain the following

theorem.

Theorem 2: The following scaling result is attainable with

ESM:

Δ̄ESM,N =
δnmax

2β
N + O(N), (10)

where nmax is given in (25). �
Proof: See Appendix B.

Remark 1: Comparing the scaling results of Theorem 2 and

Corollary 1, it is found that the scaling factor is
δnmax

2β by ESM

and D
2 without spatial multiplexing. Due to the fact that δ < 1,

β ≥ 1 and D ≥ 1, the scaling factor of ESM is strictly smaller

than that without spatial multiplexing. �

V. SIMULATION RESULTS

In this section, we run Monte-Carlo simulations to validate

the derived AoI performance and scaling results. The arrival

packets are generated based on Bernoulli distributions with
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Fig. 4. Long-time average AoI for RR-ONE [6] and ESM with λn = 1/50,
∀n.
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Fig. 5. Long-time average AoI for RR-ONE [6] and ESM with λn = 1/100,
∀n.

arrival rates given in the figures. The packet lengths for status

update are 2, 4 and 8 time slots in the figures as shown

by the legends. The pilot length in ESM is given by (25)

and the physical-layer channel estimation is abstracted by

(9) with β = 1. The simulation runs for 106 time slots to

obtain the long-time average AoI. In comparison, we show the

performance of RR-ONE in [6] which is proved to achieve the

optimal scaling law without spatial multiplexing. It is shown

by Fig. 3, 4 and 5 that the derived scaling law in Theorem

2 is well observed; moreover, the improved scaling factor,

i.e., the slope of the curve, demonstrates that ESM benefit

from spatial multiplexing such that the AoI is irrelevant to the

packet lengths, i.e., D.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, it is found that spatial multiplexing or multi-

terminal detection on the wireless uplink, on account of the

mandatory pilot overhead and channel estimation error, can

improve the scalability of status update with a large number



of terminals in terms of AoI. In particular, the scaling factor

of AoI with the number of terminals can be improved by a

multiplicative factor proportional to the packet transmission

time. While the paper shows an improved scaling result, the

optimal scaling result with spatial multiplexing is still unclear,

which is left for future work.

APPENDIX A

PROOF OF THEOREM 1

First, the transmission success probability of a transmission

frame is calculated. We adopt ps(K,L) as an abstraction

of physical-layer transmission success probability by spatial

multiplexing, with a pilot length of L and the number of

concurrent terminals of K. Given that the scheduling interval

for each terminal is T = D + L, the distribution of the age

of the packet at the terminal side when scheduled, i.e., an
for terminal-n, is (in the case of empty queues, an equals the

current AoI of terminal-n, which is denoted by hn, for ease

of exposition; note that an < hn if the queue is not empty and

thus there is no ambiguity below)

Pr {an = a|τn = T} = λn(1− λn)
a, a = 0, ..., T − 1,

Pr {an = hn|τn = T} = (1− λn)
T , (11)

where τn denotes the time since last scheduling of terminal-

n. Also note that we assume after a terminal transmits in a

transmission frame, the transmitted packet leaves its queue

even if the transmission fails since no feedback information

from the BS is assumed. Based on ESM, all N terminals

are scheduled in each transmission frame, the probability that

there are K terminals that have non-empty queues is therefore

following the binomial distribution, i.e.,

qn(K,N, T ) �
(
N

K

)
(1− δn)

N−KδKn , (12)

where δn � 1 − (1 − λn)
T . The transmission success proba-

bility in the s-th transmission frame is therefore

cs,n(L, S) �
∫ +∞

−∞
qn(x, S,m)ps(x, L)dx. (13)

Armed with the above results, we are ready to calculate the

long-time-average AoI. The following derivation is based on a

generalization of the PASTA theorem, i.e., the ASTA property

[14, Theorem 3.14]. Basically, each scheduling is seen as a

calibration for the AoI of the outside observer (in this case

is the BS) based on the observed age of the packet at the

terminal side; due to possible transmission failures deriving

from ROSE by elastic spatial multiplexing, the calibrations

are also subject to failures. Figure 6 illustrates the evolution

processes of AoI of terminal-n and the age of the packet at

terminal-n and their interplay.

Observing Figure 6, although the scheduling interval of

every terminal is fixed to m, the transmission is subject to

failure which is denoted by the dotted line with cs = 0 in

(22). Therefore, denoting the successful transmission interval

of terminal-n as Xn,π(l) where l denotes the interval index,

it follows a geometric distribution, i.e.,

Pr{Xn,π(l) = Tγ} = (1− cs,n(L, S))
γ−1cs,n(L, S),

∀n ∈ {1, ..., N}, l = 1, 2, ... (14)

Note that cs,n(L, S) is irrespective with l such that Xn,π(l)
is i.i.d. over time. The first and second moments of Xn,π(l)
then follow:

E [Xn,π(l)] = E[γ]T =
T

cs,n(L, S)
,

E
[
X2

n,π(l)
]
= E[γ2]T 2 =

2− cs,n(L, S)

cs,n(L, S)2
T 2. (15)

To proceed to apply the ASTA property and calculate the

AoI, we first need to verify two crucial conditions. Denote

Rn,π(t) as the counting process of successful transmission

times before the t-th time slot of terminal n, i.e., Rn,π(t) �
sup {r :

∑r
k=0 Xn,π(l) ≤ t}.

(i) The successful transmission interval processes

{Xn,π(l), n = 1, ..., N} are independent with the

packet age processes an(t), n = 1, ..., N} at terminals,

with finite first and second raw moments.

(ii) The counting processes Rn,π(t), n = 1, ..., N are renewal

processes. �
It is clear that both conditions are met based on (15) and the

i.i.d. property of Xn,π(l) illustrated before. Thereby, following

the same arguments in, e.g., [15], the long-time-average AoI

can be readily calculated by the sum of the highlighted

geometric areas, denoted by Ql,n in Figure 6:

Δ̄n,π = lim sup
τ→∞

Y

τ

1

Y

Y∑
l=1

Ql,n

= lim sup
τ→∞

Y

τ
lim

Y→∞
1

Y

Y∑
k=1

Ql,n

=
E[Ql,n]

T
. (16)

The last equality is based on the elementary renewal theorem

[16]. It then follows that

Δ̄n,π =
1

T
E

[
Xn,π(l)(an(sl) +D − 1)

+ (Xn,π(l)− 1)
Xn,π(l)

2

]
(a)
=

1

T

(
E [Xn,π(l)]E [an(sl)] +D − 1

+
1

2

(
E[X2

n,π(l)]− E[Xn,π(l)]
))

(b)
= E [An(sk)] +D +

2− cs,n(L, S)

2cs,n(L, S)
T − 3

2
, (17)

where the equality (a) is based on the condition (i), i.e.,

Xn,π(l) and an(sl) are independent, and the equality (b)
follows from (15).
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Fig. 6. Age of the packet at terminal-n assuming one packet buffer (left) and AoI at the BS (right).

Then we apply the ASTA property to calculate E [an(sl)];
the ASTA property is stated here for the completeness of the

paper.

Lemma 1: [14, Theorem 3.14] Let U be a Markov state

process and N be a counting process. Then ASTA holds for

the pair (U,N) if U is left-continuous and the pair (U,N) is

forward-pointwise independent, i.e., for all t > 0, U(t) and

{N(t+ s)−N(s) : s ≥ 1} are independent.

Based on Lemma 1, let U be {an(t), t = 1, 2...}, and N be

the counting process of the number of successful transmission

times before time t. It follows from condition (i) that U and N
are independent. The requirement for U to be left-continuous

is also satisfied by prescribing that the age of the packet at the

time of new packet arrival equals to the age of the old packet.

Therefore, the conditions of Lemma 1 is upheld, expect that

U , i.e., {an(t), t = 1, 2...} is a Markov state process. This

is obvious since the packet arrival process is Bernoulli. In

addition, the steady-state stationary distribution is derived in

the following lemma, facilitating the following calculation of

AoI.

Lemma 2: {an(t), t = 1, 2...} is a Markov state process

with the steady-state stationary distribution given as

αn(j) = αn(1− λn)
j−1, (18)

where αn(j) denotes the probability of the age of packet at

terminal-n equals j time slots in the steady-state.

Proof: At each time slot, the probability of a packet

arrival is λn and thereby the age decreases to one; otherwise,

the age increases by one with probability of 1−λn. The steady-

state stationary distribution is hence a geometric distribution

with parameter λn.

Then it follows that

E [an(sl)] = lim
Y→∞

1

Y

Y∑
l=1

an(sl) = E [an(t)] =
1

λn
, (19)

which essentially states that the random and independent

observation of the age process equals the statistical average

in a long time duration. The proof of Theorem 1 is hereby

concluded.

APPENDIX B

PROOF OF THEOREM 2

The binomial distribution in (12) can be approximated

by a continuous Gaussian distribution as stated in the De

Moivre–Laplace theorem

qn(K,S,m) 	 1√
2πNδn(1− δn)

e
−(K−Nδn)2

2Nδn(1−δn) , (20)

The general rule-of-thumb of the approximation to be accurate

is N is sufficiently large; specifically, the following condition

should be satisfied: [17]

|1− 2δn|√
Nδn(1− δn)

=
1√
N

∣∣∣∣∣
√

1− δn
δn

−
√

δn
1− δn

∣∣∣∣∣ < 1

3
. (21)

It follows that

cs,n(L,N) �
∫ +∞

−∞
qn(x,N,m)ps(x, L)dx

(a)
=

∫ βL

−∞
qn(x,N,m)dx

= 1− 1

2
erfc

(
βL−Nδn√
2Nδn(1− δn)

)
, (22)

where the equality (a) stems from (9). Then, it becomes clear

that

Δ̄ESM,N =
1

N

N∑
n=1

Δ̄n,π

=
1

N

N∑
n=1

(
E [an(sl)] +

2− cs,n(L, S)

2cs,n(L,N)
T +D − 3

2

)

=
1

N

N∑
n=1

1

λn
+D − 3

2

+
1

N

N∑
n=1

1 + 1
2 erfc

(
βL−Nδn√
2Nδn(1−δn)

)
1− 1

2 erfc

(
βL−Nδn√
2Nδn(1−δn)

) L+D

2
.

(23)



It is well-known that the complementary error function can be

approximated by [18]

erfc(x) ≈
√

2e

π

√
α− 1

α
e−αx2

, x ≥ 0, α > 1, (24)

and α can be adjusted to minimize the approximation error.

Therefore, we can set L to be

Lapp = max
n∈{1,...,N}

{
Nδn + ω

√
2Nδn(1− δn)

β

}
, (25)

where ω > 0 and nmax = argmax

{
Nδn+ω

√
2Nδn(1−δn)

β

}
,

such that ∀n ∈ {1, ..., N},

erfc

(
βLapp −Nδn√
2Nδn(1− δn)

)
�

√
2e

π

√
α− 1

α
e−αω2

. (26)

It follows that the long-time average AoI with pilot length of

Lapp is

Δ̄ESM,N � 1

N

N∑
n=1

1

λn
+D − 3

2

+
1 + 1

2

√
2e
π

√
α−1
α e−αω2

1− 1
2

√
2e
π

√
α−1
α e−αω2

×
(
Nδnmax + ω

√
2Nδnmax(1− δnmax)

2β
+

D

2

)
.

(27)

The scaling result can be obtained by

lim
N→∞

Δ̄ESM,N

N
= lim

N→∞

1 + 1
2

√
2e
π

√
α−1
α e−αω2

1− 1
2

√
2e
π

√
α−1
α e−αω2︸ ︷︷ ︸

M1

×
(
δnmax

2β
+

ω
√
2δnmax(1− δnmax)

2
√
Nβ︸ ︷︷ ︸

M2

)

(a)≈ δnmax

2β
. (28)

The last approximation (a) is obtained by observing that a

moderately large ω (e.g., ω > 3/
√
α) would lead to M1 ≈ 1

and limN→∞ M2 = 0. With this, we conclude the proof.
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