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Abstract—Channel state information (CSI) is of vital impor-
tance in wireless communication systems. Existing CSI acquisi-
tion methods usually rely on pilot transmissions, and geographi-
cally separated base stations (BSs) with non-correlated CSI need
to be assigned with orthogonal pilots which occupy excessive
system resources. Our previous work adopts a data-driven deep
learning based approach which leverages the CSI at a local BS
to infer the CSI remotely, however the relevance of CSI between
separated BSs is not specified explicitly. In this paper, we exploit a
model-based methodology to derive the Cramér-Rao lower bound
(CRLB) of remote CSI inference given the local CSI. Although
the model is simplified, the derived CRLB explicitly illustrates the
relationship between the inference performance and several key
system parameters, e.g., terminal distance and antenna array
size. In particular, it shows that by leveraging multiple local
BSs, the inference error exhibits a larger power-law decay rate
(w.r.t. number of antennas), compared with a single local BS; this
explains and validates our findings in evaluating the deep-neural-
network-based (DNN-based) CSI inference. We further improve
on the DNN-based method by employing dropout and deeper
networks, and show an inference performance of approximately
90% accuracy in a realistic scenario with CSI generated by a
ray-tracing simulator.

Index Terms—Channel state information, multiple-input
multiple-output, deep neural network, Cramér-Rao lower bound

I. INTRODUCTION

Channel state information (CSI) plays a pivotal role in

wireless communication systems, especially with the wide

adoption of massive multiple-input multiple-output (MIMO)

technology in the 5G and beyond systems. The knowledge of

CSI can facilitate, and is necessary for, beamforming, spatial

multiplexing, user scheduling and spatial diversity.

The acquisition of CSI usually relies on pilot transmissions,

i.e., known signals transmitted only for probing the propa-

gation channel. Broadly speaking, without considering pilots

for particular usage such as demodulation and phase offset

correction, the pilot-based CSI acquisition involves either

uplink pilots utilizing channel reciprocity [1] or downlink

pilots and uplink CSI feedback [2], both entailing a severe

signalling overhead in the system design. Traditional methods

for overhead-reduced CSI acquisition usually involves leverag-

ing the CSI linear correlations in spatial, time and frequency

domains. The majority of the related works focus on the spatial

domain correlation. By transforming the CSI to the angular

domain where most of the angular bins carry negligible energy,

the dimensionality of CSI is significantly reduced [2]–[6].

The time domain correlation is often modeled by the Gauss-

Markov process, and work has been done considering the

heterogeneity of channel coherence among users [7]. There is

also recent work [8] proposing a more efficient pilot packing

which is enabled by orthogonal time frequency space (OTFS)

modulation. In OFDM systems, the CSI correlation that can be

exploited in the frequency domain stems from the sparse multi-

path component (MPC) delay profile of the channel impulse

response; such correlations can be exploited based on the

compressive sensing framework [9].

In the spatial domain, the linear correlation among co-

located antennas proves helpful in reducing the CSI overhead;

however, the distance between two remote base stations (BSs)

renders this simple structure powerless since channels of

remote sites (with distance much larger than wavelength, cf.

Fig. 1) are considered linearly independent. More sophisticated

data structures in CSI, which are not obvious so far due to the

complicated propagation environment, should be explored for

CSI overhead reduction. Our previous work [10], [11] adopted

a data-driven approach, particularly the deep neural network

(DNN), to address this issue and showed promising results in

inferring the CSI at a remote site based on observations at a

local site. However, the work uses a completely model-free

approach and hence no theoretical analysis was given.

In this paper, a deeper understanding of the CSI structure

is desired, towards which end we first describe the general re-

mote CSI inference problem and accordingly present a model-

based Cramér-Rao lower bound (CRLB) analysis. Although

the employment of channel models, e.g., one-ring model [12],

[13] and line-of-sight (LoS) model in this paper, or perhaps

any other existing channel models in the literature, cannot

fully describe the real-world propagation environment, they

are useful in obtaining insightful and closed-form results.

Afterwards, for realistic implementation we improve upon

our deep learning based approach and achieve good and

robust (w.r.t. propagation channels) performance. The main
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Fig. 1. A one-ring model based CSI inference scenario illustration. Two local sites with known CSI are described; the CSI at the remote site is unknown
and to be inferred.

contributions include that we derive the closed-form CRLB of

remote CSI inference when the channel is LoS; we find that

the inference CRLB when considering a LoS and 2D scenario

scales down as 1/Mlc where Mlc denotes the number of local

BS antennas when CSI of one local BS is used, and 1/M3
lc with

CSI from more than one BSs; a novel DNN is proposed which

exhibits improved performance compared with previous work,

and more importantly, can be applied universally in real-world

scenarios.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a communication setup (see Fig. 1) where the

terminal (user equipment, UE) is surrounded by local scatter-

ers. Let x be the CSI between the terminal and a number of

BSs (henceforth called "local sites"). Let there be another BS,

henceforth called “remote site”, with CSI y. The terminal has

a single antenna element, while the BSs have antenna arrays

of size Mlc for the local sites and Mrm for the remote site,

respectively. The goal is to infer y from the knowledge of x.

Such an inference problem from x to y might be ill-posed, in

the sense that any of the following conditions is not satisfied:

• For any x, there exists a unique y that corresponds to

the channel realization.

• The mapping from x to y is steady, i.e., given a small

error of x, the corresponding error of y is also limited.

In practice, we can usually relax the first condition to that

if the mapping is not unique, then the mapping error is, to

some extent, acceptable. The inference problem is studied by

considering the physical propagation environment. Define the

propagation channel as a vector of parameters zp, consisting

of, e.g., scatterer locations, reflection attenuation factors and

etc. Then both the CSIs at the local or remote site can be

expressed as a function of zp and terminal location s based

on the same methodology of ray-tracing models, i.e.,

x = f(s, zp) and y = g(s, zp), (1)

where f(·) and g(·) denotes the function mappings from the

physical environment and terminal location to the CSIs at

the local sites and remote site, respectively. Based upon this,

the inference problem is by and large solved if the physical

environment and the terminal location are perfectly known. In

particular, it has been shown [14], [15] that if a high-resolution

estimation of the MPC parameters (angles, amplitudes) is

available, then a prediction of the instantaneous channel

impulse response can be made as long as the separation

between local and remote sites is less than the stationarity

region of the channel. However, in realistic situations we

cannot invert the function mapping of x = f(s, zp) due to

e.g., modelling errors, limited sampling points, insufficient

observation accuracy and etc, rendering the whole inference

problem ill-posed.

On the other hand, we argue that as Mlc increases, the

inverse problem of x = f(s, zp) becomes less ill-conditioned.

Furthermore, in the following sections we will show that with

growing Mlc, the inference problem can be addressed with

more and more accuracy. This phenomenon is referred to as

CSI manifestation, as the propagation channel manifests from

the CSI as the CSI spatial dimensionality grows. One of the

main objectives of the paper is to obtain the scaling result of,

e.g., the inference error, with Mlc.
1

III. CRLB ANALYSIS BASED ON ONE-RING CHANNEL

MODEL

To gain insights into the channel inference problem and

performance, as well as the CSI manifestation phenomenon, a

theoretical analysis based on widely-adopted channel models

is conducted in this section. The general model described in

(1) is implicit and therefore infeasible for theoretical anal-

ysis. Towards this end, we adopt a model-based approach

which essentially transforms the CSI inference problem to a

parameter extraction problem based on a well-defined channel

model; specifically, the one-ring ray-tracing channel model is

used where the scatterers are assumed to be placed within a

ring of radius rmax (only single-scattering is considered). The

1In this paper, we assume the uniform linear antenna arrays at the BS sites
and the system topology is two-dimensional.



terminal is at the center of the scatterer-ring. The received

signal y = [y1, ..., yM ]T at a site can be written by (denote

the channel vector by h = [h1, ..., hM ]T)

yi =
√

Ptxhi + ni,

hi =

K∑
k=1

gki exp

(
−j2π

λ
dki

)
, (2)

where k is the index of MPC going through the k-th scatterer,

gki � λ
4πdki

denotes the channel gain due to pathloss based

on Friis’ law, the Gaussian additive noise is denoted by

ni with variance of σ2 (the sounding signal is omitted for

simplification and assumed with effective transmit power of

Ptx), and the path distance of the k-th MPC received at the

i-th antenna is denoted by dki which equals

dki = ξtk + ξki (3)

with ξtk denoting the distance from the terminal to the k-th

scatterer and ξki the distance from the k-th scatterer to the i-th
receive antenna. Assuming that the angle spread at the terminal

is relatively small and the terminal is in the far-field, i.e.,

D � rmax and D � 2M2
lcδ

2

λ where δ is antenna spacing [16],

the channel gains of all MPCs are therefore approximately

identical, i.e., gki = g, ∀1 ≤ k ≤ K, 1 ≤ i ≤ M , and

dki ≈ ξk + iδ cos γk. (4)

Denote by ξk the distance from the terminal to the antenna

array (a reference point such that the above equation is upheld)

passing through the k-th scatterer, and γk is the angle-of-

arrival (AoA) of the k-th MPC. Based on this approximation,

(2) can be re-written as

yi =

K∑
k=1

g
√

Ptx exp

(
−j2πδi

λ
cos γk + jφk

)
+ ni, (5)

where φk = − j2π
λ ξk, and g = λ

4πD represents the pathloss.

The angular power spectrum (APS) seen at a site is defined

as

S(γ) = gμ(γ)p(γ), (6)

where γ is the AoA to the site and S(γ) is normalized such

that ∫ γmax

−γmax

S2(γ)dγ = g2. (7)

The scatterer angular distribution is characterized by μ(γ), and

the probability that the MPC with AoA γ is observable (not

blocked) at the site is p(γ). For example, if we assume that

the scatterers are continuously placed on the ring with radius

rmax, then [17]

μring(γ) =
2√

γ2
max − (γ − θ)2

, (8)

where θ − γmax ≤ γ ≤ θ + γmax and θ is the mean AoA of

the terminal and γmax denotes the maximum angular spread. A

typical form of p(γ) is e.g., uniform on the disk with a radius

of rmax. The channel array response is written as

yi =

∫ γmax

−γmax

√
PtxS(γ)

× exp

(
−j2πδi

λ
cos (γ + θ) + jφγ

)
dγ + ni. (9)

Combing with (1), we denote

hlc,i = f (θlc, Slc(γ), φlc,γ , rmax,lc) ,

hrm,i = g (θrm, Srm(γ), φrm,γ , rmax,rm) , (10)

where the subscripts (·)lc and (·)rm denote the local site and

the remote site, respectively. The function mapping of f(·)
and g(·) are substantiated by (9). Note that the model of (10)

allows, e.g., different angular spreads, different visibility of

scatterers, different APSs at the local site and the remote site,

by distinct rmax, pγ , μ(γ), respectively. It is thus significantly

more general than a model valid within a stationarity region,

which assumes that only the phases of MPCs vary (due to

phase shifts related to the different run lengths).
Based on the above model, the channel inference task can

be stated concretely below:

P1: Estimate hrm, given hlc, s.t., Eq. (10) is satisfied.

(11)

A. Parameter Extraction and Inference: CRLB Analysis
It is observed that the implicit channel inference problem

in (1) is transformed to a parameter extraction and estimation

problem in P1, based on the adopted channel models; this al-

lows us to derive the CSI inference CRLB which indicates the

CSI inference accuracy. Equivalently, the inverse of the CRLB,

representing the Fisher information, indicates the amount of

information that the local CSI carries about the remote CSI.
To further simplify the model and focus on the main

goal of CSI inference, two reasonable assumptions are made,

which describe the capability boundary of CSI inference, i.e.,

parameters that can be inferred and those cannot based on

realistic rationality. Specifically,

• The phase of an arrival MPC, i.e., φγ , is random (i.i.d.

among MPCs) and cannot be inferred. This is a practical

and realistic consideration given the fact that the phase

of an electromagnetic wave shifts dramatically even with

a slight movement of the terminal (several wavelengths).

• The observable scatterers seen at the remote site, i.e.,

Srm(γ), rmax,rm, cannot be inferred based on the ob-

servation at local site which provides little information

about whether an MPC is obstructed seen at the remote

site. Instead, this information can be obtained by using

a relatively infrequent probing signals by the remote site

given the fact that the scattering environment is constant

inside the stationarity region (typical size of tens of

meters in urban areas).2

2The requirement for pilot signals to probe the MPC distributions is mainly
assumed for theoretical analysis; based on the deep learning implementation,
these pilots are usually unnecessary to obtain a good CSI inference perfor-
mance.



Based on these assumptions, we focus on analyzing the in-

ference performance with respect to the AoA at the remote site

θrm to obtain theoretical results. The end goal is to derive the

CRLB of the estimation of θrm, towards which we first solve

the inverse problem of hlc,i = f (θlc, Slc(γ), φlc,γ , rmax,lc), and

then relates to the AoA of θrm based on geometry. Based on the

first assumption, the phase is random and hence the received

signal in (9) can be viewed as a zero-mean circular complex

Gaussian process (assuming a large number of scatterers),

whose probability distribution function (pdf) is completely

characterized by its covariance matrix (sufficient statistics)

Cy = E[yyH] = PtxE

[
hhH

]
+Cn, (12)

where Cn is the noise covariance, and its estimation as

Ĉy =
1

K

K∑
k=1

y(k)yH(k), (13)

where K is the number of sampling points, y(k) denotes the

k-th sample, and furthermore{
E

[
hhH

]}
ml

= E
[
hmhH

l

]
=

∫ γmax

−γmax

S(γ) exp

(
−j2πδm

λ
cos (γ + θ) + jφγ

)
dγ

×
∫ γmax

−γmax

S(γ) exp

(
j2πδl

λ
cos (γ + θ)− jφγ

)
dγ

(a)
=

∫ γmax

−γmax

S2(γ) exp

(
−j2πδ(m− l)

λ
cos (γ + θ)

)
dγ

(b)
= exp

(
−j2πδ(m− l)

λ
cos θ

)
×
∫ γmax

−γmax

S2(γ) exp

(
j2πδ(m− l)

λ
sin θγ

)
dγ

(c)
= exp

(
−j2πδ(m− l)

λ
cos θ

)

×F−1

⎧⎨
⎩S2(γ)rect

(
γ

2γmax

) ∣∣∣∣∣
f=γ

⎫⎬
⎭
∣∣∣∣∣
t=

(m−l)δ sin θ
λ

.(14)

The equality of (a) is based on the fact that the arrival phases

of MPCs are assumed i.i.d. and hence the cross terms in the

integral are averaged out. The equality of (b) is based on the

approximation that rmax is small and hence

sin γ ≈ γ and cos γ ≈ 1. (15)

The equality of (c) is obtained by employing the inverse

Fourier transform and rect(·) denotes the rectangular function.

The channel covariance matrix can be obtained with each entry

given in (14). Thereby, we are ready to derive the CRLB of

channel inference. Given the observations at the local site Cylc

in (12), the log-likelihood function can be written as

L(z) = −K log |Cylc
| −Ktr

[
C−1

ylc
Ĉylc

]
+ const. (16)

where z = {S(γ), γmax, θlc}. Its derivative can be calculated

as

dL(z) = −Ktr
[
C−1

ylc
−C−1

ylc
Ĉylc

C−1
ylc

]
dCylc

. (17)

The Fisher information matrix FIM is given by

{Jz}ij = −E

[
∂2L(z)
∂zi∂zj

]

= KE

⎡
⎣∂

(
tr
[
IMlc

−C−1
ylc

Ĉylc

]
C−1

ylc
Di

)
∂zj

⎤
⎦

= Ktr
[
C−1

ylc
E

[
Ĉylc

]
C−1

ylc
DjC

−1
ylc

Di

]
+Ktr

[
IMlc

−C−1
ylc

E

[
Ĉylc

]] ∂ (C−1
ylc

Di

)
∂zj

(a)
= Ktr

[
C−1

ylc
DjC

−1
ylc

Di

]
, (18)

where we use E

[
Ĉylc

]
= Cylc

in equality (a), and Di =
∂Cylc

∂zi
. Based on (18), the CRLB of AoA (θlc) and terminal

distance Dlc can be obtained by extracting the diagonal entries

of the inverse FIM.

The CRLB of θrm can be therefore obtained in the following.

Without loss of generality, assume the coordinates of the local

site and remote site are (0, 0) and (D0 cos θ0, D0 sin θ0) in

a two-dimensional Cartesian coordinate system, respectively.

Based on θlc and Dlc, the coordinate of the terminal can be

expressed in two ways as follows:

xt = Dlc cos θlc = D0 cos θ0 +Drm cos θrm, (19)

yt = Dlc sin θlc = D0 sin θ0 +Drm sin θrm. (20)

The AoA at the remote site can be hence represented by Dlc

and Drm as follows

θrm = arctan

(
Dlc sin θlc −D0 sin θ0
Dlc cos θlc −D0 cos θ0

)
. (21)

The CRLB of θrm can be expressed as:

CRB(θrm) =

(
∂θrm
∂Dlc

)2

CRB(Dlc) +

(
∂θrm
∂θlc

)2

CRB(θlc)

=
D2

0 sin
2 (θ0 − θlc)

D4
rm

CRB(Dlc)

+
D2

lc (Dlc −D0 cos (θ0 − θlc))
2

D4
rm

CRB(θlc),(22)

where CRB(Dlc) and CRB(θlc) are obtained from (18).

The calculation of Di in (18) depends on the channel model,

e.g., scattering distribution inside the ring. It seems elusive

to calculate closed-form expressions for general models. To

gain some insights, we consider several special cases in the

following where the angular spreads γmax,lc and γmax,rm are

small and approach zero, i.e., a LoS MPC only.

B. Special Case: LoS Scenario and One Local Site

Considering the LOS case, γmax = 0, S(γ) = Δ(γ)
(Δ(x) = 0, ∀x �= 0, and

∫∞
−∞ Δ(x) = 1), and hence

yylc,LOS
= ρlc exp (jφ)e+ n, (23)

where ρlc =
√
PtxMlc

λ
4πDlc

, {e}i = e
−j2πiδ

λ
cos θlc√

Mlc
. Due to the

fact that there is only one LOS MPC, the Gaussianity of the



array response is lost; specifically the first term on the right-

hand side of the equation is deterministic and therefore we

have

yylc,LOS
∼ CN (ρlc exp (jφ)e, σ

2IMlc
). (24)

A small modification to (18) is required to account for non-

zero mean, which reads (z = [ρlc, τlc, φ])

{Jz}ij = Ktr
[
C−1

ylc
DjC

−1
ylc

Di

]
+
2K

σ2

(
∂u

∂zj

∂u

∂zi
+

∂v

∂zi

∂v

∂zj

)
, (25)

where in this case m = ρlc exp (jφ)e � u + jv, Cylc
=

σ2IMlc
and therefore Di = 0, ∀i. Denote τlc � − 2πδ cos θlc

λ ,

then

{Jz}11 =
2K

σ2
eHe =

2K

σ2
,

{Jz}12 = {Jz}21 = {Jz}13 = {Jz}31 = 0,

{Jz}22 =
2Kρ2lc
σ2

(
∂e

∂τlc

)H
∂e

∂τlc
=

Kρ2lc(Mlc − 1)(2Mlc − 1)

3σ2
,

{Jz}23 = {Jz}32 =
Mlc − 1

σ2
Kρ2lc,

{Jz}33 =
2Kρ2lc
σ2

. (26)

The CRLBs can be readily derived as

CRB(ρlc) =
{
J−1

z

}
11

=
σ2

2K
,

CRB(τlc) =
{
J−1

z

}
22

=
6σ2

Kρ2lc(M
2
lc − 1)Mlc

, (27)

respectively. Similar with (22), we can then obtain the CRLBs

of Dlc and θlc as:

CRB(Dlc) =
8π2D4

lcσ
2

λ2KPtxMlc
,

CRB(θlc) =
24σ2D2

lc

KMlc(M2
lc − 1)Ptxδ2sin2θlc

. (28)

Denote the effective receive signal-to-noise ratio as SNR =
Ptx

(
λ

4πDlc

)2

σ2 , and δ = λ/2, then

CRB1(θrm) =
D2

lc

D4
rm

1

KSNR

(
c1D

2
0 sin

2 (θ0 − θlc)

Mlc︸ ︷︷ ︸
M1

+
c2 (Dlc −D0 cos (θ0 − θlc))

2

Mlc(M2
lc − 1) sin2 θlc

)
︸ ︷︷ ︸

M2

, (29)

where c1 = 1
2 , c2 = 6

π2 . It is noted that

M1 ∼ 1

Mlc
, and M2 ∼ 1

M3
lc

, (30)

and hence

CRB1(θrm) ∼ 1

Mlc
. (31)

Therefore the inference performance bottleneck is at M1, i.e.,

the inference error related to distance estimation which is

reciprocal with Mlc. On the other hand, the inference error

associated with AoA estimation scales inversely with M3
lc.

Based on this observation, the performance can be improved

by leveraging CSI at multiple sites and correspondingly mul-

tiple AoAs to make the inference. We present the following

CRLB analysis which accounts for two separate local sites

(with known CSI) to infer the CSI at a remote cite.

C. Special Case: LoS Scenario with Known CSI at Two Sites

In this subsection, we will show that by using the AoAs at

two geographically separated sites, the inference error can be

significantly reduced; such a scenario presents itself in densely

deployed cellular systems and, moreover, the cost of acquiring

CSI at one other site is affordable.

Inheriting the denotations in the last subsection, denote the

location of the other local site as, without loss of generality,

(D′
lc, 0) with D′

lc > 0, and denote the AoA at the other

local site as θ′lc. The AoA at the remote site, i.e., θrm, can

be expressed by

θrm = arctan

(
D′

lc sin θ
′
lc sin θlc −D0 sin θ0 sin (θ

′
lc − θlc)

D′
lc sin θ

′
lc cos θlc −D0 cos θ0 sin (θ′lc − θlc)

)
.

(32)

The CRLB of θrm with known CSI at two local sites is

CRB2(θrm) =
6D2

lc

π2D4
rmMlc(M2

lc − 1)

1

KSNR

× ω1 + ω2

sin2 (θlc − θ′lc) sin
2 θlc

, (33)

where

ω1 = D2
0 sin

2 θlc sin
2(θ0 − θlc)

ω2 = sin2 θ′lc (D
′
lc sin θ

′
lc −D0 sin(θ

′
lc − θ0))

2
. (34)

It follows that

CRB2(θrm) ∼ 1

M3
lc

. (35)

Remark 1: While this paper focuses on inference based

solely on spatial domain signals, one direction that is certainly

worth studying is the CSI inference performance incorporating

wideband signals such that the time-of-arrival (ToA) can also

be estimated. �

IV. CSI INFERENCE BASED ON DNN

CSI inference in real-world signal propagation scenarios

is extremely difficult and intractable, and moreover existing

model-based approaches are inadequate to address this issue.

Therefore, inspired by the recent advance in deep learning

field, we develop a DNN to accomplish this task. A DNN with

4 hidden layers is adopted. The sizes of layers are Mlc, Mlc,

64 and 32, respectively. The non-linear function for the hidden

layers is LeakyReLU, while the non-linear function for the

output layer is sigmoid. The input features are quantized CSI

in the angular domain (take modulus and logarithm) which are

normalized by Z-score normalization method while the output



Input layer
(Mlc nodes)

Hidden layer 1
(Mlc nodes)

Hidden layer 2
(Mlc nodes)

Hidden layer 3
(64 nodes)

Hidden layer 4
(32 nodes)

Output layer 
(1 node)

Dropout Activation function: 
LeakyRelu

Activation function: Softmax
Loss function: AoA MSE

Batch normalization

Fig. 2. The proposed DNN architecture.

is normalized AOA (AOA divided by π). Here the prescribed

codebook is the discrete-Fourier-transform (DFT) codebook,

and the size of the codebook is Mlc.

In order to avoid overfitting, we apply dropout [18] in our

neural network and the keep probability is set to be 0.7.

The cost function of the neural network is mean-squared-error

(MSE) of AOA and the MSE is also our performance metric.

The Adam gradient-based optimizer is used with step size of

10−4. We randomly divide data set into two parts for training

(90%) and test (10%). The trained model runs for 10 times

and the average is taken.

V. SIMULATION RESULTS

In Fig. 3 and 4, we present simulation results based on

the one-ring channel model. The two local BSs (LBSs) are

located at (−100, 0) and (100, 0) (the distance unit is meter),

the remote BS (RBS) whose CSI is to be inferred is at

(0, 50) and the terminal is randomly located on a semi-disk

(to avoid AoA phase ambiguity of ULA) centered at the

RBS with a radius of 50 m (not allowed to be within 5 m

to the RBS). The DNN is as described in Section IV. The

results, which are plotted on logarithmic scale, indicate that

the scaling law derived for the LoS scenario, i.e., the CRLB

scales with 1/Mlc and 1/M3
lc with one LBS and two LBSs

respectively, is upheld for the one-ring channel model. More

importantly, it is found that the inference performance by DNN

also exhibits such behaviour, while the exact scaling factors

may vary due to the unclear noise structure of the black-

box of DNN. We should emphasize that it may be unfair to

compare the performance of DNN and CRLB since DNN is

applied to a much more general scenario while the CRLB is

concerned with the optimal channel estimator in this specific

channel model. However, the insights given by analyzing the

CRLB are still useful as it is shown that the qualitative results

are consistent between the DNN performance and analytical

CRLB.

The DNN-based approach is tested in a more realistic

scenario in Fig. 5. We use the Wireless Incite R© ray-tracing

channel simulator to generate the CSI. The system layout is

depicted in Fig. 5(a). The antenna arrays are two-dimensional

with sizes of 4×100 and 4×20 for LBS and RBS respectively;

both arrays are located with heights of 20 m. The carrier

frequency is 28 GHz and the system bandwidth is 10 MHz.

20000 samples are obtained for training and test. In this
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Fig. 3. DNN-based CSI inference performance.
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Fig. 5. DNN-based CSI inference performance with a realistic ray-tracing
channel simulator.

case where the propagation channel may be non-LoS, the

beamforming vector (DFT codebook) with the largest power,

instead of the AoA which is not well-defined in this case, is the

inference objective; therefore the output layer is modified to

have the same number of neurons as the number of codewords

in the DFT codebook, and the loss function is changed to the



cross-entropy function compared with the AoA MSE in Fig. 2.

The performance metric is still the inference error normalized

in the DFT codebook (to values within [0, 1]). Concretely, the

normalized inference error is defined as

e � 1− ĥ
†
h

h†
opth

, (36)

where ĥ is the inferred CSI from the DFT codebook, hopt

is the optimal DFT beamforming vector in the codebook and

the CSI obtained by the ray-tracing simulator is denoted by

h. It is observed from Fig. 5(b) that about 85% of the time,

the optimal beamforming vector of RBS can be inferred with

an error less than 10% based on observations at LBSs in a

realistic scenario.

VI. CONCLUSIONS

The remote CSI inference problem is considered both theo-

retically and practically. To establish the relevance between

CSI of LBS and RBS, we use the physical propagation

environment as the bridge, however the inference problem is

identified as ill-posed with insufficient observation capability.

With proper simplifications by adopting the one-ring channel

model, we transform the inference problem to a parameter

extraction problem and derive the CRLB thereof. For a special

LoS case, the closed-form expressions of CRLB can be

obtained, showing that the CRLB scales inversely with Mlc

and M3
lc by using one and two LBSs respectively. An improved

DNN with dropout to thwart overfitting and a deeper network

is proposed, showing robustly good performance in real-world

scenarios. It is found by simulations that the theoretical CRLB

analysis, although significantly simplified, provides insightful

performance observations and meaningful implications.
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