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Data-Driven User Complaint Prediction
for Mobile Access Networks
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Abstract—In this paper, we present a user-complaint
prediction system for mobile access networks based on
network monitoring data. By applying machine-learning
models, the proposed system can relate user complaints
to network performance indicators, alarm reports in a
data-driven fashion, and predict the complaint events in
a fine-grained spatial area within a specific time window.
The proposed system harnesses several special designs to
deal with the specialty in complaint prediction; complaint
bursts are extracted using linear filtering and threshold
detection to reduce the noisy fluctuation in raw complaint
events. A fuzzy gridding method is also proposed to
resolve the inaccuracy in verbally described complaint
locations. Furthermore, we combine up-sampling with
down-sampling to combat the severe skewness towards
negative samples. The proposed system is evaluated using
a real dataset collected from a major Chinese mobile
operator, in which, events due to complaint bursts account
approximately for only 0.3% of all recorded events. Re-
sults show that our system can detect 30% of complaint
bursts 3 h ahead with more than 80% precision. This will
achieve a corresponding proportion of quality of experi-
ence improvement if all predicted complaint events can be
handled in advance through proper network maintenance.
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I. INTRODUCTION

W ith the proliferation of smart devices such as smart
phones and tablets, it has become essential for people

to be able to enjoy mobile services anywhere and anytime. To
meet this desire, there has been significant growth in the num-
ber of mobile users and traffic over the past few years. At the
same time, the service quality required from mobile networks
has also changed, and the emerging machine-to-machine traf-
fic have distinct requirements with respect to bandwidth and
latency. To address the increasing demands, mobile networks
are also evolving at an unprecedented rapid pace. The next-
generation mobile access networks will incorporate a wide
range of new technologies and architectures, including mas-
sive multi-input multi-output (MIMO), millimeter wave, and
cloud-based networking.

However, this trend will inevitably lead to increasingly
complex networks. The quality of experience (QoE) that is
perceived by mobile users will be influenced by numerous net-
work functions, both physical and virtual, which also interact
in complex ways. Owing to the complexity, it will become
extremely challenging for mobile operators to maintain the
health of their networks using only traditional human monitor-
ing and maintenance. In contrast, the autonomous operation
of mobile networks will be more responsive, comprehensive,
and cost-efficient than human-centric methods. Consequently,
the automatic monitoring, reporting, and maintenance of mo-
bile networks have become both important and valuable.

The deployment of active end-to-end probes across the net-
work is a widely used method to prevent the occurrence of
network anomalies[1,2]. By injecting probe packets into net-
work and monitoring transmission processes using deployed
probes, potential disruptions may be detected. However, with
the rapid increase in network complexity[3], the use of probes
to cover all key combination nodes is tedious. On the other
hand, the importing of additional packets may change the raw
performance of the networks, or may even affect mobile users’
service experiences, which is contrary to the original purpose.

Passive monitoring-based systems on both the end-user
side[4] and service-provider side[5,6] are used to monitor the
underlying traffic. Using these systems, any abnormal behav-
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ior in traffic patterns is related to network anomalies, and sup-
ports performance maintenance without introducing interfer-
ence information. The major advantage of this kind of method
is the assumption that the reduction in the QoE of users will
result in a decrease in the traffic load, which is very challeng-
ing. Many technical approaches such as network offloading
have been used to handle the network traffic demand. There-
fore, even if the load decreases in an abnormal manner, the
users’ service experience may not be impacted. In order to
guarantee a good user-service experience, traffic monitoring is
not considered an efficient way to deal with network anomaly.

Fueled by recent developments in data platforms and
machine-learning algorithms, data-driven methods have be-
come an attractive alternative to autonomous network oper-
ation, and they have attracted much attention. Ref. [8] sum-
marizes the literature involving machine-learning algorithms
that are applied to self-organizing cellular networks. The k-
NN algorithm is used to address user mobility in Ref. [9].
A crowd-sensing method is built to suppress fake sensing
attacks in Ref. [10]. In the field of computer networks,
statistical modeling and neural-network classification have
been widely applied to network intrusion and fault-detection
applications[11-13]. However, most of these studies focus on
improving the security of computer systems and networks,
which means that most of the anomalies are generated by hos-
tile attacks. Therefore, these methods may not be suitable for
anomalies that are caused by network resource constraints and
instability.

External datasets are considered to be an additional source
of information for network anomaly detection. Ref. [14] pro-
poses a usage-based method to detect mobile network fail-
ure by monitoring aggregate customer usage. Ref. [15] tries
to predict users’ complaints in Internet protocol television
(IPTV) networks. As in IPTV networks, data are all collected
from users’ set-top boxes, and it is easy to correlate user com-
plaints with unique set-top boxes, which makes the location
of anomalies simple. However, this may not be suitable in
mobile access networks.

Although previous studies have demonstrated their effec-
tiveness in the detection of network anomalies, a major draw-
back is that the detection results cannot be easily related to
the network QoE. Self-organizing functions in current sys-
tems can automatically mitigate the effect of some network
anomalies, leaving negligible degradation in actual user ex-
periences. For example, traffic offloading can automatically
dissipate the congesting traffic into neighboring cells before
users are made aware of the problem. However, users may not
utilize the malfunctioning network element when anomalies
occur happen. These hidden anomalies will not hurt the user
experience either. Owing to this mismatch, the effort to opti-
mize networks according to detected anomalies may not result
in fruitful QoE improvement. In order to improve QoE more

effectively, we believe that the detection process should keep
the user experience in the loop. To do so, indicators of the
user experience should be incorporated into the detection tar-
get. In this way, the relationship between anomalies and the
user experience can be modeled and then used to weigh the
severity of anomalies, and to help mobile operators prioritize
counter-measures.

In this paper, we propose the platform for advanced net-
work data analytics (PANDA) following such an argument.
PANDA can predict whether or not user complaints will surge
in a fine-grained spatial area within a given time window. The
mobile operators can then diagnose and fix the base stations
(BSs) in the detected area in order to mitigate complaint bursts
in advance. We form the prediction model in PANDA follow-
ing a data-driven fashion: network-monitoring data and user-
complaint records are transformed into features and targets of
a machine-learning pipeline, and this generalizes the relation-
ship between the complaint and the network monitoring data.
For the dataset, we use different forms that require special
treatment before they can be used by machine-learning mod-
els. We propose a fuzzy spatial gridding method to combat the
inaccuracy in complaint location. We also extract complaint
burst events with filtering to avoid the noise in raw complaint
time series. Moreover, we apply a multi-scale time windowing
method to distill temporal features. PANDA is evaluated us-
ing a real dataset collected from a major Chinese mobile net-
work. The dataset exhibits a high skewness with only 0.3% of
events in complaint bursts. PANDA can recall 30% of these
events in complaint bursts 3 h ahead with an 80% accuracy.
The contributions of this paper are as follows:
• We propose to incorporate QoE indicators when detect-

ing anomalies in mobile networks. Following this idea, we
propose PANDA, which can predict the location and time
of future complaint burst events by mining through network
monitoring data and complaint records.
• We design several measures to deal with the special

problems in complaint prediction. We use a fuzzy spatial grid-
ding method to resolve the inaccuracy in verbally described
complaint locations, and we apply filtering on raw complaint
events to reduce the noise and obtain complaint burst events;
we also propose to use multi-scale time windowing to extract
fine temporal features from the regulated data sources.
• We evaluate the proposed system using real-life data col-

lected from a major Chinese mobile network. Our proposed
system can recall 30% of these events in complaint bursts 3 h
ahead with an 80% accuracy in the highly imbalanced dataset.
We also discuss the influence of various system parameters.

The rest of the paper is organized as follows: In section II,
we analyze the characteristics of complaint events. Details of
our prediction system are described in section III. The pro-
posed system is evaluated based on underlying network data
in section IV. Finally, the paper is concluded in section V.
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Figure 1 Hourly-average time series of user complaints (top), complaint bursts (second), and 10 BS performance indicators (rest) in a typical 3-base-station
spatial grid during April, 2015

II. UNDERSTANDING USER
COMPLAINT PREDICTION

Despite its importance, complaint predictions are signifi-
cantly complicated by three distinguished characteristics of
user complaints. In this section, we describe these character-
istics with the help of data visualization. Then, we explain the
challenges that they impose, and propose methods to tackle
the challenges.

A. Uncertain Root Causes
In general, users’ complaints reflect their dissatisfaction

with the network’s QoS. However, the uncertainty in human
behavior can significantly attenuate the correlation between a
single piece of complaint and the system anomaly that trig-
gered it in the first place. For example, because contacting
customer service staff can be time-consuming, users may be
reluctant to call in when the network problem is only slightly
annoying. Consequently, the corresponding complaints are
likely to be delayed to an unknown time, or they may even be
completely abandoned. Such micro-scale uncertainty of indi-
vidual users is aggregated at the macroscale and transformed
into noise-like series of complaints, as shown in the top-most
sub-figure of Fig. 1 (The performance indicators in the fig-
ure are described in Tab. 1). Hence, the prediction of a single
complaint can be extremely difficult and unrewarding.

In contrast, users’ responses tend to be quick and intense
under serious system malfunctions: if the cellular service in

Table 1 Description of the 10 BS performance indicators

index category description

1 TCH voice channel aggregate traffic

2 EDGE equivalent data traffic

3 EDGE upstream EGPRS traffic

4 EDGE upstream GPRS traffic

5 EDGE downstream EGPRS traffic

6 EDGE downstream GPRS traffic

7 TCH wireless access

8 TCH voice channel dropping rate

9 SDCCH SCH congestion rate

10 SDCCH SCH dropping rate

an area is severely disrupted owing to a power black-out, a
large number of user complaints can be expected afterwards.
Owing to the negative impact of such incidents, some network
operators consider the frequency of complaint surges as one
of their key performance indicators (KPIs). With regard to the
aforementioned issue, we also focus our system on predict-
ing such surges in user complaints. We filter the time series
of user complaints, and extract complaint burst events dur-
ing which time the number of user complaints is suspiciously
high. These burst events, as shown in the second-to-top sub-
figure of Fig. 1, are used as the prediction targets. Note that
there is a chance that fake surges that are purely due to random
coincidence are also labeled positive. Such labeling noise can
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be reduced by more conservative labeling or manual expert
cleansing.

B. Inaccurate Localization
Owing to the cellular nature of mobile communication sys-

tems, the localization of user complaints is necessary to iden-
tify the responsible network element. Nonetheless, location
information provided in real life is often too inaccurate to be
used directly: complaint location is most commonly described
verbally by users during complaint calls, and is logged into the
system as formatted address strings. These addresses are often
so coarse that BSs are within the vicinity. Further, even if op-
erators are equipped with instrumentation to capture the cell
from which the users issued complaint calls, users can still be
some distance away from the responsible cell, whether owing
to user mobility or to find a better signal.

We employ a fuzzy association method to cope with the
inaccuracy in location information. First, we obtain the geo-
graphical coordinates of a part of a complaint by looking up
its address in a geographic information system (GIS) database.
Then, we blame it on a spatial grid determined by its k-nearest
BSs, the exact coordinates of which are known beforehand. A
prerequisite of this method is that the inaccuracy of localiza-
tion is constrained to a small geographical span. If recorded
addresses are too coarse or even completely wrong, our pro-
posed method may associate a complaint wrongly with spatial
grids, creating false input.

C. Weak Correlation
As described above, we establish a predictive relationship

between network monitoring data and complaint burst events.
To determine the feasibility of the naive linear predictor, we
calculate the linear correlation coefficients between the time
series of complaints and 10 BS performance indicators, re-
spectively. The histogram of coefficients across spatial grids
is shown in Fig. 2 (Only the grids with more than 10 com-
plaints during the studied period are considered). As can be
seen in the figure, the correlation is quite low, indicating that
a naive linear predictor may be incapable of the intended task.
This motivates us to turn to machine-learning models to fully
exploit the potential non-linear correlation, and to build an ef-
fective predictor.

III. SYSTEM DESIGN

In this section, we introduce the design of the proposed sys-
tem. First, we give an overview of the system structure, and
then we describe the details of each pipeline step.

A. Overview
The structure of the proposed system is illustrated in Fig. 3.

The inputs (bottom-left) to the system are data logs that con-
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Figure 2 Histogram of linear correlation coefficients between complaint
and 10 BS performance indicator time series across different spatial grids

tain hourly network indicator reports, system alarm logs, and
user-complaint records; while the output (right-most) is a pre-
diction of whether a complaint burst event is about to hap-
pen in a spatial grid during a future time window. The oper-
ation of the system is divided into an offline training phase,
in which a prediction model is formulated based on histori-
cal data, and an online prediction phase which performs the
actual prediction based on real-time input. Both phases are
composed of multiple data-preparation steps and a machine-
learning pipeline.

B. Preparation Steps
The data-preparation steps first combine complaint data to-

gether with network monitoring data based on the proposed
fuzzy gridding method. They then transform the gridded com-
plaint events into complaint burst events, and extract feature
vectors from the merged data through multiscale windowing.
Missing data points are also filtered out during the process.
The prepared data are finally presented in fine matrix form
to the machine-learning pipeline for either offline training or
online prediction. Next, we describe each preparation step in
detail.

1) Spatial Gridding and Time Binning: As described
above, one major difficulty in processing user complaint
records lies in their inaccurate localization. Therefore, al-
though we know the exact geographical location of BSs, this
piece of information cannot be used in a straightforward way
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Figure 3 Diagram of the proposed complaint prediction system

to associate them with complaint records.
As a solution, we assume that the inaccuracy introduced by

verbal description is locally constrained, so we can resolve the
uncertainty by fuzzily associating a complaint event with mul-
tiple network elements. More specifically, for each section of
a user complaint, we extract the recorded address string and
find the corresponding geographical coordinates using GIS
API. The coordinates are then compared with that of BSs to
find the k nearest one; ties are broken deterministically. In this
way, the k nearest BSs can unambiguously determine the ge-
ographical area to which the complaint is most likely belong.
We denote each of these areas with a unique spatial ID (SID)
that is derived from the IDs of its composing BSs. After fuzzy
gridding, the performance indicator and alarm logs of BSs can
then be associated with spatial grids in a straightforward man-
ner.

It is difficult to analytically derive all of the possible spa-
tial grids because their existence depends largely on the geo-
graphical layout of BSs as well as the k used. For this reason,
we choose to generate spatial grids as we process complaint
records, generating a new grid only when the k nearest BSs
form a new one. Note that this method will overlook spa-
tial grids that do not possess any of the recorded complaints.
However, given that the records cover a sufficiently long pe-
riod, it is also reasonable to argue that these grids are unlikely
to cause serious complaint surges in the future. Therefore, we
can reduce the complexity of gridding by excluding many true
negatives at the cost of a few false negatives.

The data input for PANDA may also have inconsistent time
formats, e.g., performance indicators are provided hourly,
while complaint records and alarm logs come with a second-
level time-stamp. We applied time binning to unify the time
formats. Specifically, a binning granularity that is no finer
than the most coarse input is first chosen (in our case, no finer

than 1 h), and then data entries are assigned accordingly to
discrete bins with unique time IDs (TIDs). Further, data en-
tries with the same TID and SID are aggregated using some
predefined function, e.g., summing or averaging.

2) Complaint Burst Detection: As explained in the previ-
ous section, we chose the occurrence of complaint burst events
as our prediction target. For the implementation, we applied
a straightforward method of low-pass filtering followed by
thresholding. Given the discrete complaint time series of a
spatial grid, we first passed the time series through a linear
filter with a short impulse response, e.g., { 1

2 ,1,
1
2}. Then, we

compared the filtered time series against a threshold value, and
the time bins in which the filtered value exceeds the thresh-
old are considered to have a complaint burst. We chose this
method because it can identify two important temporal com-
plaint patterns, namely a very intense complaint in a single
time bin, or many intermittent complaints in consecutive time
bins, which are the most dominant complaint patterns from
our observation. There are other ways of defining a complaint
burst event, e.g., based on the empirical complaint intensity
distribution. We chose the proposed method because it can
readily give very intuitive results with much less computa-
tional complexity.

3) Feature and Target Generation: After the above proce-
dures, the multiple raw data sources (performance indicators,
alarms logs, complaint events, and burst events) are reduced
to fixed-length vectors with a common set of (SID, TID) keys.
To generate feature vectors and prediction targets for the sub-
sequent machine-learning pipeline, we further employed mul-
tiscale windowing on the data vectors. We first specify N f fea-
ture time windows Wf = {(si

f ,e
i
f ), i = 1,2, · · · ,N f } and one

target time window wt = (st ,et), with each tuple represent-
ing each window’s relative offset (edge included) to a refer-
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ence TID. For convenience, we assume the values of feature
time window to be the negative of their actual offset values,
and si

f 6 ei
f , while target time windows use the original offset

value. Note that to guarantee causality, feature time windows
should be strictly earlier than the target time window. A safe-
guard for this requirement is to use positive si

f and a zero st

because the actual value of the reference TID does not really
matter.

For each SID and each feature time window, we determined
the element-wise average for all of the raw data vectors whose
TID falls within that time window, resulting in a new vector
having the same dimensionality as the original raw data vec-
tor(s). The average vectors corresponding to all combinations
of feature time windows and input data sources are then con-
catenated to form the final feature vector sample. In the train-
ing phase, we also need to create a prediction target for each
feature vector. Here, we label a feature vector as positive if the
TID of any complaint burst event falls within the target time
window, and consider it negative for other cases. Finally, the
feature vectors as well as labels (only for the training phase)
are passed to the machine-learning pipeline.

4) Data Cleansing: Occasionally, the raw data vector may
be missing for some (SID, TID), whether owing to malfunc-
tions in the logging system or data loss. To guarantee that
missing data do not introduce noise into the feature vector, we
applied data cleansing at the same time with feature genera-
tion. The basic logic is that the number of raw vectors to be
averaged should be equal to the length of the time window
without missing data. Thus, if we observe otherwise, we can
decide that the time window is compromised and should be
filtered out. In the end, we only preserve feature vectors for
which none of the feature time windows encountered missing
data.

C. Machine-Learning Pipeline
We feed the labeled feature vectors into a machine-learning

pipeline for training and prediction. The pipeline contains
steps for standardization, class resampling, dimensionality re-
duction as well as a classifier. In the training phase, the
pipeline is also cross-validated with a time-based splitting
method to prevent overfitting.

1) Standardization: Because the feature vectors are de-
rived from a set of heterogeneous raw data vectors, each of
the feature dimensions may have a significantly different bias
and scale of variance. Dimensions with an overwhelmingly
high variance may saturate the classifier. To avoid this, we
standardize each dense feature dimension to zero mean and
unit variance using linear transformation and scaling. For
sparse dimensions, we only scale them to unit variance to
avoid breaking their sparsity and dramatically increasing the
PANDA’s memory footprint.

2) Class Resampling: Complaint prediction is a typical
imbalanced prediction task: there are far fewer positive sam-
ples than negative samples. A standard approach to combat
imbalanced datasets is to use class resampling. We can either
randomly repeat the minority positive samples (up-sampling)
or randomly discard some of the majority negative samples
(down-sampling). Both methods are known to have draw-
backs: up-sampling will introduce artificial patterns by dis-
torting the positive distribution, while down-sampling will re-
duce the amount of available data. Hence, we choose to com-
bine these two methods by applying up-sampling and down-
sampling with the prescribed order and relative ratio in order
to achieve the target ratio of positive and negative samples.

3) Dimensionality Reduction: The number of feature di-
mensions is proportional to the number of feature time win-
dows and raw data dimensions. Therefore, it is possible that
we introduced too many feature dimensions and stumbled the
classifier (curse of dimensionality). To solve this problem,
we also included an (optional) principal component analysis
(PCA-) based dimensionality reduction step to help reduce the
dimensionality in unfavorable cases.

4) Machine-Learning Classifier: We mainly rely on a
machine-learning classifier to derive the non-linear relation-
ship between the target and the feature vector. We experi-
mented with logistic regression (LR), decision trees (DTs),
random forests (RFs), and support vector machine (SVMs).
We find RF to be best suited to our problem because of the
large data size and high noise level. Details are presented later
in the Evaluation section.

5) Cross-Validation: In cross-validation, it is important to
avoid data leakage from the validation set into the training
set. This may occur if the target time window of validation
samples overlaps with the feature time window of training
samples in our problem. To avoid this problem, we applied
a time-based splitting method. The labeled training vectors
are classified into training and validation sets based on their
reference TID: samples before the splitting TID are classified
into the training set, while the others are put into the valida-
tion set. If an additional test set is needed, we randomly draw
samples from the validation set to form one.

IV. EVALUATION

In this section, we evaluate the proposed PANDA system
based on a real dataset. We start by describing the dataset
used, then introduce our basic parameter setting and evalua-
tion standard. Finally, we present the performance of PANDA
under different meta parameters. Complaint indicators are de-
scribed in Tab. 2.
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Table 2 Description on complaint indicators

indicator description

k gridding granularity

s f start time of a feature time window

e f end time of a feature time window

st start time of a target time window

et end time of a target time window

tw time window

rPN ratio of positive samples versus negative samples

A. Dataset Description
The evaluation dataset is collected from a second-tier city

in western China by a major Chinese mobile operator. On the
user side, it contains the complaint records from all mobile
users in the city, while on the network-side, it contains perfor-
mance indicator reports and alarm logs of 2G BSs city-wide as
well as static information about their configuration; all of the
data except for the performance indicator reports cover the pe-
riod from January 2015 to May 2015, while the performance
indicators are only provided for April 2015. The raw dataset
amounts to around 6GB in total.

The complaint dataset contains multiple information fields,
including the time-stamp of the complaint call, the logical
category of the reported problem, the address of the com-
plainant, and other miscellaneous fields. The complaint cat-
egory is chosen by the customer service representative from
a pre-compiled list of categories. In the evaluation, we only
extracted the complaint categories that pertain to the more se-
rious problems of coverage quality, voice calls, and mobile
data services. The BS performance indicator dataset exhibits
hourly reports of 10 core indicators, such as aggregated uplink
and downlink traffic, congestion rate, and call drop rate. The
equipment alarm log records the responsible network element,
i.e., time-stamp, category, and the severity of system alarms.
There is a total of more than 200 alarm categories, each of
which is used as a dimension when generating the raw data
vectors. Owing to the high dimensionality, the alarm vector is
stored as a sparse vector during implementation.

B. System Configuration
As discussed in previous sections, we can achieve differ-

ent tradeoffs between the inaccuracy of the complaint loca-
tion and the uncertainty of the responsible BS(s) by varying
the gridding granularity, k. If k is set to be too small, for
instance 1, complaint events are in danger of being wrongly
blamed by a BS neighboring the responsible one; however, if
k is set to be too large, the prediction will become largely un-
usable because we have to go through each of the k BSs to
find the responsible one. Therefore, we set k to an intermedi-
ate value of 3 in the evaluation.

C. Evaluation Results
PANDA has numerous tunable parameters besides the ba-

sic ones described above. In this section, we experiment with
the parameters that have the most significant influence on the
system performance, and we discuss their implications. These
parameters include feature time window, target time window,
re-sampling ratio, and the choice of machine-learning classi-
fier.

1) Evaluation Standard: There are numerous options
when choosing an evaluation metric for a classifier, such as
precision-recall, the receiver operator characteristic (ROC),
and the F1 measure. However, because we are dealing with a
highly imbalanced problem, we choose precision-recall as our
major metrics following the argument in Ref. [16]. Specif-
ically, the precision is the percentage of predicted positive
samples that are truly positive, while recall is the percentage
of truly positive samples that are also predicted to be positive.

In the context of our problem, the precision represents the
percentage of predicted complaint bursts that will truly hap-
pen, while recall equals the percentage of all incoming com-
plaint bursts that will be detected beforehand. Because pos-
itive predictions will lead to physical efforts to diagnose and
fix malfunctioning BSs, a low precision will incur a substan-
tial cost in real-life operation. Therefore, we favor precision
over recall, and only present the system performance at a high-
precision low-recall regime.

2) Feature Time Windows: The choice of feature time
window determines how much information the machine-
learning algorithm can be obtained from the raw data. We
tested the proposed system under different feature time-
window configurations to study the influence of the total win-
dow length, window granularity, and lead time on system per-
formance.

The total length of the feature time window determines how
far the model can look back into history. The system perfor-
mance under feature window configurations for different total
lengths is shown in Fig. 4. Each point in the figure represents
the median of 10 independent runs, and the corresponding er-
ror bar indicates the 10% and 90% percentile. The window
configurations that are used are also listed in the table below.
To isolate the influence of the total window length, we fix 4
time windows and a 3-h lead time in all configurations. As
can be seen, both the precision and recall increase with the
total length of the time window. This is intuitive because a
longer window length will reveal more historic information.
However, it should be noted that tw8 exhibits greater precision
than tw7 at the cost of a larger recall, which indicates that the
gain from the longer time window is saturating beyond around
100 h.

Another function of the feature time windows is to segment
the history to reveal temporary details. The influence of the
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tw5 (3, 3), (4, 12), (13, 24), (25, 48) 46

tw6 (3, 3), (4, 12), (13, 24), (25, 72) 70

tw7 (3, 3), (4, 12), (13, 24), (25, 96) 94

tw8 (3, 3), (4, 12), (13, 24), (25, 120) 118

Figure 4 Precision and recall values on test sets with increasing length in
feature time windows

number of feature time windows is illustrated in Fig. 5. For
all configurations, we set a lead time of 3 h and a total win-
dow length of 96 h. As can be seen in the table below, the
greater the number of feature time windows, the finer will the
total window length be segmented. The overall trend in Fig. 5
indicates that a finer segmentation (from tw1 to tw6) can help
to improve the precision and recall. This is intuitive because
a finer segmentation will reveal more temporal information.
Nevertheless, we also note that over-segmentation (tw7 and
tw8) will degrade the system performance. A possible expla-
nation is that too large a number of feature time windows will
greatly increase the dimensionality of the feature vector and
dilute the training dataset, preventing machine-learning mod-
els from successfully generalizing the decision rule.

The prediction lead time is another important parameter. It
is defined as the delay between the predicted event and the
last feature time window. The lead time determines how far
the predictor should look into the future, e.g., a 5-h lead time
means that it predicts whether or not an event will happen 5 h
later. A longer lead time will provide mobile operators with
more time to diagnose equipment, and is therefore more favor-
able. The precision and recall values under varying lead times
are shown in Fig. 6. Here, the prediction is for st = 0, and
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tw6 (3, 6), (7, 12), (13, 48), (49, 96) 4

tw7 (3,3), (4,12), (13,24), (25,72), (73,96) 5

tw8 (3,3), (4,12), (13,24), (25,48), (49,96) 5

Figure 5 Precision and recall on test set with different number of feature
time windows

all configurations are simply time-shifted versions of tw1. As
can be seen, the system performance tends to decrease as the
lead time increases from 1 to 5, but it stops decreasing when
we continue to increase the lead time. This result may appear
counter-intuitive because it should be harder to predict further
into the future. However, an analysis of the system’s perfor-
mance for a different BS will shed light on the unexpected
result.

3) Target Time Window: The parameter target time win-
dow plays a pivotal role in our proposed system. As shown in
Fig. 7, the system performance increases steadily and signifi-
cantly with the length of the target time window. A straight-
forward explanation is that one complaint burst event can turn
all target time windows that cover it into positive values. Thus,
increasing the length of the target time window will result in
more positive samples and help to alleviate the high skewness
of raw events. A deeper insight is that human-generated com-
plaint events are inherently uncertain in time, therefore the
fuzziness introduced by longer target time windows can re-
solve such uncertainty. Note that a longer time window also
makes the system overly pessimistic, and tends to exaggerate
the situation. Consider the extreme case in which a year-long
target window is likely to raise an alarm every hour. There-
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tw8 (18, 18), (19, 27), (28, 65), (66, 113) 18

tw9 (24, 24), (25, 33), (34, 71), (72, 119) 24

Figure 6 Precision and recall on test set with different lead time

fore, it is more practical to set the target time window to a
reasonably small length, e.g., 15 h.

4) Resampling Ratio: To deal with the imbalance of posi-
tive and negative samples, we re-sampled the training set be-
fore training the machine-learning model. Fig. 8 shows the
precision and recall value as we increase the target p/n ratio
(rPN), which is the ratio between the number of positive and
negative samples after resampling. As can be seen, the gen-
eral trend is that a higher rPN will increase the recall at the cost
of lower precision. Intuitively, rPN represents how we want to
distort the original distribution: a higher value will emphasize
the positive samples, making the classifier more aggressive,
while lower values have the opposite effect, and makes the
classifier more conservative. In addition, the increase in the
recall is faster than the decrease in the precision. Therefore,
it is more suitable to resample with a higher rPN and then to
weak the precision and recall values with the classifier thresh-
old.

5) Choice of Classifier: We also experimented with three
commonly used classifiers, i.e., LR, DTs, and RFs. Fig. 9
compares their precision and recall values under varying tar-
get time windows. We performed parameter searches for all
three classifiers, and only the best parameter is shown. All of
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Figure 7 Precision and recall values under target time windows with differ-
ent lengths

the classifiers used a decision threshold of 0.5. The RF has a
clear advantage over the other two in terms of precision, while
the recall values are comparable. Because we can always in-
crease the recall by decreasing the precision, RF is generally
the best option from among the three.
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Figure 8 Effect of positive and negative event sampling ratio on prediction
accuracy

V. CONCLUSION

In this paper, we presented PANDA, which is a user com-
plaint prediction system for mobile access networks based on
network monitoring data. PANDA can relate user complaints
with network performance indicators, alarm reports, and other
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Figure 9 Precision and recall values of three different classifiers under vary-
ing target time windows

data in a data-driven fashion, and it can predict the occurrence
of complaint events in a fine-grained spatial area within a cer-
tain time window. PANDA was evaluated on a real dataset
collected from a major Chinese mobile network, where com-
plaint burst events account for only about 0.3% of all recorded
events. Results show that our proposed system can detect 30%
of events in complaint bursts 3 h ahead with more than 80%
precision. This will realize a corresponding degree of QoE im-
provement if all detected complaint events can be mitigated in
advance by employing proper network maintenance.

In addition to being applicable for complaint prediction is-
sues, it may be applied for many other similar issues that at-
tempt to use one of two datasets that are interrelated in order
to predict another dataset, our proposed system may probably
work well. As future work, we aim to identify more suitable
scenes to which our proposed system can be applied.
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