
A Two-Step Learning and Interpolation Method for
Location-based Channel Database Construction

Ruichen Deng∗, Zhiyuan Jiang∗, Sheng Zhou∗, Shuguang Cui†, and Zhisheng Niu∗
∗Tsinghua National Laboratory for Information Science and Technology,

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Email: drc13@mails.tsinghua.edu.cn, {zhiyuan,sheng.zhou,niuzhs}@tsinghua.edu.cn

† Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
Email: sgcui@ucdavis.edu

Abstract—Timely and accurate knowledge of channel state
information (CSI) is necessary to support scheduling operations
at both physical and network layers. In order to support pilot-
free channel estimation in cell sleeping scenarios, we propose
to adopt a channel database that stores the CSI as a function
of geographic locations. Such a channel database is generated
from historical user records, which usually can not cover all
the locations in the cell. Therefore, we develop a two-step
interpolation method to infer the channels at the uncovered
locations. The method firstly applies the K-nearest-neighbor
method to form a coarse database and then refines it with a deep
convolutional neural network. When applied to the channel data
generated by ray tracing software, our method shows a great
advantage in performance over the conventional interpolation
methods.

I. INTRODUCTION

In wireless communications, channels suffer from random
variations due to multipath fading, shadowing, rain attenuation
and other factors. Accordingly, accurate channel state infor-
mation (CSI) could improve the performance of operations
at both the physical and network layers, such as MIMO
precoding and user association to base stations (BSs). The
conventional method of channel acquisition is to use probing
signals (pilots) known by both the transmitter and receiver. For
example, the CSI-RS is established as a reference signal to
obtain the channel state feedback of up to 8 transmit antennas
in LTE Release 12 [1]. But pilot-based methods face a big
challenge when applied in green networks, where the sleeping
mechanism is usually adopted to save energy for BSs with
light traffic load [2]. To send pilots, sleeping BSs need to
wake up periodically , which will dramatically decrease the
performance of energy saving.

Fortunately, the CSI can be acquired by exploiting its
correlation with other entities. For the channel of a sleeping
small BS in heterogeneous networks, Ref. [3] explores its
correlation with the channel of the antenna array located at
the macro BS. The relationship between the two channels is
learned from training samples by a customized neural network
(NN). On the other hand, the CSI is also strongly related to
the user locations, which can be acquired by GPS and the
trilateration method. In a stationary propagation environment,
the CSI can be viewed as a function of the user location
[4], [5]. Therefore, we can adopt a channel database that

stores the CSI of different locations to support pilot-free
channel estimation in the cell sleeping scenario. Such a
database is built based on the historical user records. Due
to the nonuniform user distributions, the location entries of
the database cannot be all covered. The CSI of uncovered
locations need to be interpolated.

Field tests have shown that there exist correlations among
the channels at different locations, which typically decay
exponentially with the distances between correlating parties
[6], [7]. Based on the exponential decay model for the
channel correlation and the well-known log-normal model for
shadowing, the location-channel function can be treated as
a Gaussian process and the MMSE estimator is applied to
interpolate for the channel database construction [4]. Although
the Gaussian process model is easy for analysis, it is not
accurate enough in practice since the model does not ex-
plore cell-specific channel correlations at different locations.
Supervised learning is a data-driven technique that explores
implicit correlations between two metrics. A typical learning
method for the irregular data distribution problem is the K-
nearest-neighbor (KNN) [8], which predicts the channel as
the average of its neighboring channels. The KNN method
outperforms the Guassian process model based method in our
simulations, since it explores the cell-specific characteristics
from the historical data.

The combination weights in the averaging operation of
the KNN method are not optimized, which makes the KNN
interpolation results still rough. Therefore, we propose a two-
step learning and interpolation method to further improve the
performance. First, we apply the KNN method to interpolate
for the channels at uncovered locations, which leads to a
coarse channel database. Afterwards, a deep convolutional
neural network (CNN) is used to refine the coarse database by
exploring local channel patterns. We generate urban channel
samples based on the ray tracing software to validate the
performance. The proposed method is found to reduce the in-
terpolation error by more than 50% compared to the Guassian-
process-based interpolation and the KNN interpolation. The
proposed method can be easily extended to other propagation
environments due to its model-free characteristic.

The rest of the paper is organized as follows. Section II
introduce the location-based channel database and its matrix

Fig. 1. An illustration for the channel database. The cell is in a grid layout
with the BS at the center and user samples with an irregular distribution. The
invalid regions are colored in gray.

representation. Then the Gaussian process model for the
channel database is illustrated in Section III. After that, we
propose the two-step learning and interpolation method in
Section IV. The simulation results are given in Section V and
conclusions are drawn in Section VI.

II. LOCATION-BASED CHANNEL DATABASES

We consider a cell in a two-dimensional layout, where a
location-based channel database of the BS stores the channel
gains to different locations. Usually, the propagation environ-
ment is non-stationary and the channels are time-varying. As
a result, the database should be renewed periodically to adapt
to the changes. We consider one renewal process and assume
the channels are approximately time-invariant.

To renew such a database, an online data collecting appro-
ach is adopted, as shown in Fig. 1. More specifically, the data
samples were generated by the users who connected to the BS
in the previous renew period (which was a subset of all users).
The n-th user (n = 1, 2, · · · , N) measured its channel from
the BS, which is denoted as yn, and sent it back to the BS
along with its location coordinate xn = (xn1, xn2). Compared
to offline data collecting methods, this online approach can
save the cost of channel measurement and well adapt to the
changing propagation environment. But the online collected
data is usually distributed irregularly over geographic locati-
ons due to the randomness of user distributions.

The geographic region in the channel database is quan-
tized in a grid layout to support fast inference. More spe-
cifically, we use a matrix D to record the channel sam-
ples at different user locations. Let xi,min and xi,max, i =
1, 2 be the lower and upper bounds of the i-th dimen-
sion coordinate, and q be the quantization resolution. Then
the channel record at location (x1, x2) is mapped to the(

R{x1−x1,min
q }+ 1,R{x2−x2,min

q }+ 1
)

-th entry of D, where

the operator R{·} rounds the value to the nearest integer. If
there are more than one records mapped to the same entry,
the value of the entry is set as the average of these records.
If there are no records mapped to the entry, it is set to
0, indicating invalid data. We assume the set of valid data
is V with cardinality V , and the valid entries are listed as
vi = (vi1, vi2), i = 1, 2, · · · , V .

This mapping process actually divides the whole area into
H ×W disjoint square regions with size q × q, where H =
ROUND{x1,max−x1,min

q } + 1,W = ROUND{x2,max−x2,min
q } + 1.

The channel of each region is represented by the correspon-
ding entry of D. By decreasing q, we can get larger D
and M , which implies a more precise description of the
channel database. However, the ratio of valid entries inD also
decreases given the same amount of historical data, making
the training more difficult. Therefore, the proper choice of
q should reach a balance between training efficiency and
quantization accuracy of the database.

Our goal is to complete the channel database matrix D, i.e.,
to predict the invalid entries in D based on the valid entries.
In other words, we develop the interpolation function g that
maps the invalid entry index (i, j) to the channel:

g : (i, j) 7→ ŷij , (1)

where ŷij is the predicted value of yij .

III. MODEL-BASED CHANNEL INTERPOLATION

A. Channel Model

In the conventional channel database construction, the chan-
nel yij is usually modeled as a Gaussian process [4]. More
specifically, according to the log-distance path loss model, the
channel could be expressed as (in a dB scale)

yij = G0 − 10η log10 Lij + ψij , (2)

where G0 is a constant related to antenna gain, η is the path
loss exponent, and Lij is the Euclidean distance between the
transmitter and receiver. ψij represents channel fading, which
is mainly composed of shadowing and multipath fading and
difficult to analysis. The channel measurement results are
usually averaged in the time-domain. Hence the multipath
effect is mitigated. Therefore, the fading ψij is modeled as
a log-normal distribution with ψij ∼ N (0, σ2

ψ). The spatial
covariance function of shadowing is given by [10]

E{ψijψlm} = σ2
ψ exp

(
−d(ij, lm)

d0

)
, (3)

where d(ij, lm) =
√
(i− l)2 + (j −m)2 is the distance

between coordinates (i, j) and (l,m), and d0 is the correlation
distance.

We assume the channels at different locations follow a
multivariant Gaussian distribution:

y11, y12, · · · , yHW ∼ N (u,C), (4)

where u is the mean vector with the ((i−1)W+j)-th element
as G0 − 10η log10 Lij , and C is the covariance matrix with
the ((i− 1)W + j, (l − 1)W +m)-th entry as

C(i−1)W+j,(l−1)W+m = σ2
ψ exp

(
−d(ij, lm)

d0

)
(5)

.
Given an invalid entry (i, j) of D, the covariance vector

between this entry and valid entries is calculated as

aij =[
σ2
ψ exp

(
−d(ij, v11v12)

d0

)
, · · · , σ2

ψ exp

(
−d(ij, vV 1vV 2)

d0

)]T
.

(6)

Therefore, the channel of this entry is estimated as [11]

ŷij = a
T
ijC
−1
V (yV − uV) + uij , (7)

where CV , yV and uV are the covariance matrix, the channel
vector and the mean vector of the valid entries. The minimum
MSE is thus achieved:

εuk = σ2
ψ − aTijC−1V aij . (8)

The matrix inversion in the MMSE estimator involves huge
computation costs when the number of samples is large.
To reduce the complexity, we can approximate the MMSE
estimator by using only neighborhood channels for prediction.
Notice that the channel correlations are quite weak among
locations with distances more than 3d0. Therefore we only
choose the neighboring valid entries {(b1, b2) ∈ V| |b1− i| ≤
Nn, |b2 − j| ≤ Nn} to estimate the channel for the (i, j)-th
entry, where Nn is a predefined range of neighborhood.

B. Parameter Estimation
The parameters in the Gaussian model is categorized into

two categories:
1) G0, η, which are related to path loss;
2) d0, σ

2
ψ , which are related to inter-user correlations via

shadowing;
These parameters are coupled together, which makes it

difficult to derive a minimum variance unbiased estimator for
them. The correlation of shadowing satisfies exponential delay
law and becomes weak for far-away entries. Therefore we
apply an approximate estimator, which first estimates the path
loss parameters by treating all the samples as uncorrelated,
and then estimates the correlation parameters of shadowing.

1) Path Loss Parameter Estimation: We rewrite the log-
distance path loss model in (2) for all valid entries into the
vector form:

yV = LV

[
G0

η

]
+ψV + ζV , (9)

where LV = [1N×1,−10 log10 lV] with lV =
[Lv11v12 , · · · , LvV 1vV 2

]T . The estimation of G0 and η
is similar to the linear model described in [11]. We apply
the least square estimator to obtain an estimation of the
parameters given yV :[

G?0
η?

]
= (LTVLV)

−1LTVyV . (10)

2) Estimating Correlation Parameters of Shadowing: After
the path loss parameters are estimated, the fading terms of
each valid entry is obtained as

ψ̂vi1vi2 = yvi1vi2 −G?0 + 10η? log10 Lvi1vi2 . (11)

The total variation σ2
ψ is estimated as the empirical variation

of the estimated fading terms. For each valid entry (vi1, vi2),
we derive the MMSE estimate ψ̂vi1vi2 from its neighboring
valid entries. The total MSE is

εT =
1

V

V∑
i=1

(
ψ̂vi1vi2 − ψvi1vi2

)2
, (12)

which is a function of the correlation distance d0. As the
MMSE is hard to derive due to the matrix inversion in the
estimator, We adopt a simple one-dimension search to find
the optimal d?0 that minimizes the function in (12).

The model-based channel database construction method
introduced in this section has various performance limitations,
such as imperfect fitness to practical channels and large com-
putation complexity. But the exponential correlation decay
model inspires us to use neighboring channels for interpo-
lation. In the next section, we propose a more advanced local
interpolation method based on data-driven machine learning.

IV. TWO-STEP LEARNING AND INTERPOLATION FOR THE
CHANNEL DATABASE

If we regard the channel entries as pixel values and view the
whole database as an image, the channel database interpola-
tion problem is similar to the image super resolution problem
[12] [13], which is to enlarge an image by interpolating pixels.
But the valid ”pixels” of the channel database are not in a
regular layout, making the interpolation of the database more
difficult. One the other hand, the mapping function g from
locations to channels is too complex to learn directly, which
is observed in the simulation results. As a result, we propose
a two-step interpolation scheme, which first form a coarse
channel database by the KNN method and then refines it by
the CNN with a mask.

A. Step I: Forming a Coarse Channel Database by KNN
The matrix D obtained by utilizing the historical channel

records in Section I has many invalid entries, which will
hinder the application of CNN. Since the channel correlations
at different locations decay dramatically with their distances,
the KNN method suits the problem due to its nature of
neighborhood-based interpolation.

Therefore, we first form a coarse channel database with
the help of KNN, which does not need a training stage. In
this step, for an invalid entry (u1, u2), it finds the K-nearest
neighbors (b11b12), · · · , (bK1, bK2) in the valid user set V ,
and estimates the channel for (u1, u2) as the weighted mean
of its neighbor channels. Typically there are two ways of
weight assignment. One is uniform weight assignment, which
allocates equal weights to all K neighbors (uniform-weight):

yuni
u1u2

=
1

K

K∑
i=1

ybi1bi2 . (13)

Coarse Channel
 Database Tier

Mask Tier

Refined
Channel Database

Filters and
Nonlinear Mapping

Filters and
Nonlinear Mapping

Filters and
Nonlinear Mapping

Local Channel Patterns Local channel patterns

Sliding Window

Fig. 2. The structure of the convolutional neural network. The hidden layers
apply filters and nonlinear mapping operators to the input to get the database
features.

The other is distance-based-weight assignment, which alloca-
tes weights proportional to the inverse of the distance from
the neighbors:

ydis
u1u2

=

∑K
i=1

1
d(bi1bi2,u1u2)

ybi1bi2∑K
i=1

1
d(bi1bi2,u1u2)

, (14)

where d(A,B) denotes the Euclidean distance between the
input vectors of A and B.

We apply the KNN operator K to the channel matrix D
and get a coarse interpolated channel matrix E.

B. Step II: Refining Channel Database by CNN

The KNN operator can be viewed as an linear filter that
averages the channels in the neighborhood of the location
to be estimated. However, its average operation does not
consider the local patterns of channel variations. To address
this, a convolutional neural network N is used to transform
the coarse channel matrix E to the refined channel matrix
F . Such a CNN operation is also a neighborhood-based
interpolation, which is similar to the filter operation with a
sliding window. Unlike the conventional filters, the parameters
of filters in the CNN are obtained by sample training and thus
optimized. The preprocessing of the KNN interpolation in the
previous step is necessary, since the CNN does not work well
for incomplete input.

For the CNN, we adopt the structure in Fig.2, which
consists of NCNN. The input U1 consists of two tiers1, namely
the coarse channel matrix E and the mask matrix M . The
mask matrix M has the same size as D. It indicates whether
the corresponding entry in D is valid (1 for yes and 0 for no).
The mask tier is added to indicate the validness of each entry
in the data tier.

Each hidden layer i (i = 1, 2, · · · , NCNN) conducts convo-
lution operations to the input data Ui with ti tiers with size
Ci×Ci. The output has Ti+1 tiers representing the extracted

1To prevent confusion, we use ”tier” to represent a component of a data
matrix instead of ”channel” used in image processing.

channel patterns. The output of the i-th layer is the input of
the (i+ 1)-th layer:

Ui+1 = max(0,Wi ∗Ui +Bi), (15)

where Wi is an fi× fi× Ti× Ti+1 tensor representing Ti+1

linear filters and Bi is a Ti+1 dimensional vector representing
the biases of all the tiers.

More specifically, a sliding window with a size of fi × fi
moves over the input with a stride of si. Inside the window,
the inner product of the data and the coefficients of a linear
filter is calculated as the entry of an output tier. After that, the
rectified linear unit (ReLU) function is used as the activation
function to increase nonlinearity [14]. A valid convolution
(with no paddings on the edges) is applied. Therefore, each
tier of the output has a size of Ci+1 × Ci+1 with

Ci+1 =

⌊
Ci − fi
si

⌋
+ 1. (16)

The output UNCNN of the third hidden layer is the final
output of the network, which has one tier (TNCNN = 1).

C. Training and Interpolation

We divide the valid data set randomly into two subset for
training, namely the training set T and the labeling set L. In
the training process, we regard T as the new valid data set
and use the channels in T to interpolate the channels in L.

More specifically, we generate the channel matrix of the
training set as DT and the mask matrix of the training
set as MT . As discussed before, the coarse interpolated
channel matrix of training process is obtained by the KNN
preprocessing:

ET = K(DT ,MT). (17)

The loss function L(N) is the MSE between the network
output and the ground-truth in the labeling set L:

L(N) = ‖(MV −MT)� (N (ET ,MT)−D)‖2, (18)

where � is the elementwise multiplication. MV − MT
indicates the entry indexes of the labeling set L. The loss
function applies elementwise multiplication to exclude the
MSE at the entries that are not in L.

In the interpolation process, the channel and mask matrices
of the whole data set are applied with the KNN operator:

EV = K(DV ,MV), (19)

and then the interpolation is the output of the neural network:

FV = N (EV ,MV). (20)

Since the channels of sampling locations are known, we
replace the corresponding entries of F with the ground-truth
data and obtain the final channel database in the matrix G.

GV = (1−MV)� FV +DV . (21)

Fig. 3. Simulation scenario. The coverage area of the BS is colored in red
and the buildings are in white. The BS is located at Tx1 of 5 m high from
the ground.

V. SIMULATION RESULTS

The software Wireless Incite is used to generate ray tracing
results for simulations [15]. We simulate the propagation
environment in Rosslyn, Virginia, which represents a typical
heavily urbanized area, as is shown in Fig. 3. The carrier fre-
quency is set to 908 MHz and the bandwidth is 5 MHz. User
samples are collected within a 150.0 m× 84.0 m rectangle
area. For simplicity, we consider a total of 50869 points in
a grid layout with spacing 0.50 m and obtain the channels
at these points by the ray tracing technique. We measure the
receive power at each grid (with the unit of dBm) as the
channel metric. Then we randomly choose half of the grid
points (25434 points) as the valid sample set V . The remaining
samples form the testing set T . We use channel information
in the sample set C to predict the channels in the testing set
T . The performance is measured by the average root mean
square error (RMSE) between the interpolated channels and
the ground-truth:

e =

√
1

|T |
∑
i∈T

(gi − yi)2, (22)

where gi and yi are the interpolated result and the ground-
truth channel of the ith sample in T , respectively. We set the
stride of the CNN to 1. The structure of CNN is represented
by the symbol f1 − f2 − · · · − fNCNN (T1 − T2 − · · ·TNCNN),
where fi and Ti, i = 1, 2, · · · , NCNN are the size and number
of filters in the i-th layer, respectively. For example, the 9-1-5
(64-32-1) structure consists of 3 layers: the first layer has 64
filters with size 9×9, the second layer has 32 filters with size
1× 1, and the third layers has one filter with size 5× 5.

First, we compare the performance of different algorithms
in Fig. 4. The estimated pathloss parameters of the Gaussian
process discussed in Section III are G?0 = 3.26, η? =
−21.16 dB. We consider two choices for the predefined range
of neighborhood: Nn = 2 and Nn = 4, which covers a square
area of sizes 5 × 5 and 9 × 9, respectively. The estimated
correlation distances of the two Gaussian processes both are
0.50 m. The RMSE of their interpolations are very close and
much higher than the other methods. We average the channel

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

10

20

30

40

50

60

70

80

90

Number of iterations

R
M

S
E

 (
d
B

m
)

Gaussian process, N
n
=2

Gaussian process, N
n
=4

KNN, uniform weights

KNN, distance−based weights

NN, full connection

Proposed method

Fig. 4. The performance of different methods. The number of neighbors in
the KNN methods is 5. The CNN has a structure of 9-1-5 (64-32-1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

3

4

5

6

7

8

9

10

11

12

Number of iterations

R
M

S
E

 (
d
B

m
)

9−1−5 structure
9−3−5 structure
9−5−5 structure
9−3−3−5 structure
9−3−3−3−5 structure

Fig. 5. RMSE vs. filter size and number of layers.

records of 3 neighbors for interpolation in the KNN method.
The distance-based-weight KNN performs slightly better than
the uniform-weight one. We also consider a fully connected
neural network structure (NN, full connection), which treats
location coordinates as input and channels as output and
directly learns the mapping g between them from historical
samples. After tuning parameters, the network adopts two
hidden layers both with 10 nodes. The performance of this
structure does not surpass the KNN method due to the fact that
the global mapping g is too complex for the fully connected
network to learn.

In the proposed method, we use the KNN with distance-
based weights and the CNN with the 9-1-5 (64-32-1) structure.
We adopt the Adam algorithm for each iteration of optimiza-
tion [16]. After less than 5000 iterations, the network already
outperforms the KNN method. After 200,000 iterations, the
network reduces the RMSE from 8.20 dB of the KNN to 4.35
dB. The reduction is about 47%.

The performance of the CNN can be improved by tuning
the hyperparameters. Fig. 5 shows the impact of filter size and

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

3

4

5

6

7

8

9

10

11

Number of iterations

R
M

S
E

 (
d
B

m
)

32 filters

64 filters

128 filters

256 filters

Fig. 6. RMSE vs. number of filters at the first layer. The filter sizes of the
layers in the CNN are 9-3-5.

number of layers on the performance. On one hand, increasing
the filter size of the hidden layer can decrease the interpolation
error. From the 9-1-5 structure to the 9-5-5 structure, the
RMSE decreases by about 0.65 dB and is reduced by about
55% compared to the KNN interpolation. This is due to the
fact that the representing ability of the network increases
with the filter size. One the other hand, however, going
deeper does not necessarily improve the performance. From
the 9-3-5 structure to the 9-3-3-5 structure and the 9-3-3-3-5
structure, the RMSE gets higher rather than lower. A possible
explanation for this result is the increased training difficulty
with more layers. Since the network has no pooling or full
connection layers, it is easily stuck in a bad local minimum.
Similar results are observed in [13]. Another factor affecting
the performance is the number of filters, which is shown in
Fig. 6. Increasing the number of filters in the first layer from
32 to 256 can reduce the RMSE by about 1.1 dB. The runtime
of different network structures (normalized by the runtime of
the 9-1-5 (64-32-1) structure) is presented in Table I. It costs
about 1024s to finish 200000 training iterations for the 9-1-
5 (64-32-1) structure on our platform. The training time for
the network with larger filter sizes, more filters and deeper
structures is obviously higher.

TABLE I
RUNTIME TO TRAIN DIFFERENT NETWORK STRUCTURES.

Network structure Normalized runtime

9-1-5 (64-32-1) 1.00

9-3-5 (32-32-1) 1.09

9-3-5 (64-32-1) 1.30

9-3-5 (128-32-1) 1.68

9-3-5 (256-32-1) 2.44

9-5-5 (64-32-1) 1.55

9-3-3-5 (64-32-16-1) 1.55

9-3-3-3-5 (64-32-16-16-1) 1.93

VI. CONCLUSION

In this work, we considered the construction of channel
databases and proposed a two-step learning and interpolation
method to estimate the missing entries in the database. A
coarse database was first built by the KNN method and
then refined by the CNN. In the urban channels generated
by the ray tracing software, we showed that the RMSE of
KNN interpolation is much lower (about 20 dB less) than
the Guassian process based approach. The proposed two-
step method can further reduce the interpolation errors by
more than 50%. By testing different CNN architectures in
our method, we find that the benefit of increasing network
layers is much less than that of increasing the number or the
size of filters.

REFERENCES

[1] S. Sesia, M. Baker, and I. Toufik, LTE-the UMTS Long Term Evolution:
From Theory to Practice. John Wiley & Sons, Hoboken, NJ, Oct. 2011.

[2] Z. Niu, X. Guo, S. Zhou, and P. R. Kumar, “Characterizing energy-delay
tradeoff in hyper-cellular networks with base station sleeping control,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 4, pp.
641–650, April 2015.

[3] J. Liu, R. Deng, S. Zhou, and Z. Niu, “Seeing the unobservable: Chan-
nel learning for wireless communication networks,” in IEEE Global
Communications Conference (GLOBECOM), Dec.. 2015, pp. 1–6.

[4] R. Di Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson,
and H. Wymeersch, “Location-aware communications for 5G networks:
How location information can improve scalability, latency, and robus-
tness of 5G,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp.
102–112, Nov. 2014.

[5] D. Slock, “Location aided wireless communications,” in International
Symposium on Communications Control and Signal Processing (IS-
CCSP), May 2012, pp. 1–6.

[6] T. B. Sorensen, “Slow fading cross-correlation against azimuth separa-
tion of base stations,” Electronics Letters, vol. 35, no. 2, pp. 127–129,
Jan. 1999.

[7] V. Graziano, “Propagation correlations at 900 mhz,” IEEE Transactions
on Vehicular Technology, vol. 27, no. 4, pp. 182–189, Nov. 1978.

[8] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, January
1967.

[9] P. Agrawal and N. Patwari, “Correlated link shadow fading in multi-hop
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 8, no. 8, pp. 4024–4036, Aug. 2009.

[10] M. Gudmundson, “Correlation model for shadow fading in mobile radio
systems,” Electronics Letters, vol. 27, no. 23, pp. 2145–2146, Nov.
1991.

[11] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I:
Estimation Theory. Prentice Hall, April 1993.

[12] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE Transactions on Image Processing, vol. 19,
no. 11, pp. 2861–2873, Nov. 2010.

[13] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295–307, Feb. 2016.

[14] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, June 2011, pp. 315–323.

[15] P. Medeovi, M. Veleti, and . Blagojevi, “Wireless insite software
verification via analysis and comparison of simulation and measurement
results,” in Proceedings of the 35th International Convention MIPRO,
May 2012, pp. 776–781.

[16] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
MIT Press, Cambridge, 2016, vol. 1.

