
Joint Optimization of Cache Allocation and Content
Placement in Urban Vehicular Networks

Tuo Liu, Sheng Zhou, Zhisheng Niu
Beijing National Research Center for Information Science and Technology

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Email: t-liu16@mails.tsinghua.edu.cn, {sheng.zhou, niuzhs}@tsinghua.edu.cn

Abstract—Distributing popular contents, e.g., high precision
digital maps and latest road conditions, through roadside units
(RSUs) is a promising way to provide better driving safety and
support for autonomous driving. Successful content download
probability can be improved by allocating cache to RSUs and
caching popular contents therein. In this paper, we consider a
joint cache allocation and content placement problem in vehicular
networks to maximize the overall successful content download
probability, exploiting the moving information of vehicles. We
first prove that the original problem is NP-hard, and then propose
a low-complexity approximate algorithm which performs within
a bounded gap (a multiplicity factor of 1− 1/e) to the optimum.
The expression of the cache size allocated to each RSU is derived
for the proposed algorithm when the content popularity obeys
Zipf distribution. Extensive numerical experiments show that,
the proposed strategy can significantly increase the successful
content download probability as compared to existing solutions.

I. INTRODUCTION

Data download via vehicle-to-infrastructure (V2I) in vehic-
ular networks has been widely studied recently [1] [2]. Types
of contents range from advertisements, road conditions, digital
maps and multimedia contents. Once the vehicle enters the
coverage of a roadside unit (RSU) and connects successfully
to the RSU, it can request contents of interests. Then the
RSU fetches the content from the Internet via the backhaul.
However, both the connection duration when vehicles are
moving and backhaul bandwidth are limited in vehicular
networks, resulting in possible content download failure [3].
A promising solution is to allocate some cache for caching at
RSUs, and thus each RSU can proactively fetch some popular
contents and stores them in the cache. Notice that, cache size
is always limited compared with the large volume of active
contents, and vehicles can probably connect to multiple RSUs
along their trajectories. Therefore, content placement strategies
should be carefully designed and jointly optimized with cache
allocation among RSUs, exploiting the moving information of
vehicles.

Most existing works merely focus on content placement in
vehicular networks. When a user requests for some content,
the amount of downloaded data is limited by both the total
cached data and its connection time with the associated RSU.
The authors of [1] propose a heuristic content placement
algorithm to maximize the file retrieval probability within a
deadline and demonstrate its effectiveness by experiments.
Reference [4] considers minimizing the content download time
by caching at RSUs on highway. Reference [5] formulates the

content distribution problem in the V2I manner into an integer
linear programming (ILP) problem. Numerically solving the
problem reveals the impact of various parameters, including
the variance of connection time and vehicle speed, on the
successful download probability. Reference [6] focuses on
content placement in the vehicular network by addressing
different wireless channel conditions of multiple RSUs.

These works take careful considerations on the strategy
of distributing contents, while they assume cache size of
every RSU as equal, or given. Some works about cache
organization have been proposed in cellular networks [7] [8].
However, cache size optimization in vehicular networks has
received little attentions which is different from that in cellular
networks. First, vehicles move very fast while their trajectories
are limited by roads, thus following certain patterns. Second,
data traffic have great disparity on different roads. Intuitively,
those RSUs on roads with heavier traffic should be equipped
with larger cache. To this end, cache size should be optimized
subject to a total cache budget, in order to achieve higher
successful content download probability. Regarding this, we
formulate a joint cache allocation and content placement
problem in urban vehicular networks. Proving that the original
problem is NP-hard, we propose a greedy cache allocation
algorithm and it is proved to achieve (1 − 1

e) approximation
of the optimum. The closed-form expression of the cache
size when using our algorithm is derived. In comparison with
other existing algorithms via numerical experiments, our algo-
rithm can achieve 10% gain in terms of successful download
probability, and we study both analytically and numerically
on how different factors, for example the content popularity,
successful transmission probability and cache budget, impact
the successful content download probability.

The rest of this paper is organized as follows: Section II
presents our system model and problem formulation. Sec-
tion III explains the hardness of the original problem and
proposes an approximate algorithm, with the resultant cache
size expression. Section IV shows the performance of the
proposed algorithms and compares it with other existing
algorithms via extensive numerical experiments. Section V
draws conclusions.

II. PROBLEM FORMULATION

A typical architecture of urban vehicular network is illus-
trated in Fig. 1. We use similar notations in [9] and first define

a term ”contact pattern” for better illustration.
Definition 1: A contact pattern is a set of RSU

contact along the trajectory of a vehicle traveling
through the network. Three different trajectories are
shown in 1 and the corresponding contact patterns are
{RSU1,RSU2,RSU3,RSU4}, {RSU5,RSU6,RSU8} and
{RSU1,RSU6,RSU7,RSU8,RSU9} respectively.

Suppose there are a set of M RSUs {1, 2, . . . ,M} deployed
at the intersections. Denote the number of all possible contact
patterns by K. And denote the set of RSUs of the k-th
pattern and the set of patterns containing RSU m by Nk

and Gm respectively. Then define lk as the probability of the
occurrence of contact pattern k among all possible contact
patterns within the network, which depends on road traffic,
RSU topology, etc. We assume that lk can be learned or
estimated beforehand considering the GPS data can be utilized
to identify the actual trajectory of each vehicle.

The successful wireless transmission is not guaranteed un-
der the moving conditions due to the stochastic characteristic
of the wireless channel. Suppose a vehicle can successfully
download a content from the cache of RSU m with probability
qm, which is defined as successful transmission probability.
Though the successful transmission probability depends on
various factors such as the location of RSUs, the speed of
vehicles and the wireless capacity, etc, it can be learned
through large amount of historical data.

Suppose there are a set of N contents of equal size
{f1, f2, . . . , fN} in the library and, without loss of generality,
f1, f2, . . . , fN are indexed in the descending order by their re-
quest probability which obeys Zipf distribution [10] [11], i.e.,
Pn = n−a/

∑N
k=1 k

−a. Suppose there is a total cache budget
C normalized by the content size, i.e., it can store at most C
contents.1. The goal is to maximize the successful download
probability among all request from all possible contact patterns
and requests. Instead of assigning the cache uniformly to each
RSU and simply designing content placement strategy, we aim
to find the optimal cache allocation strategy as well as the
content placement strategy by taking the request probability
of contents, the probability of contact pattern and the wireless
characteristics into considerations.

Denote the size of the cache allocated to RSU m by Bm

and denote the set of contents stored in the cache of RSU m
by Fm. Accordingly, the problem is formulated as follows.

max
F1,F2,...,FM

1−
K∑

k=1

lk

N∑
j=1

Pj

∏
m∈Nk

(
1− qm1{fj∈Fm}

)
(1)

s.t.|Fm| <= Bm,m ∈ {1, 2, . . . ,M} (2)
M∑

m=1

Bm = C, (3)

where 1{x} is an indicator function that equals 1 when x
is true, and 0 otherwise. Inequality (2) denotes that contents

1The phrase ”normalized cache size” refers to the cache size normalized
by the content size in the rest of this work if without specification, e.g., if the
normalized cache size equals 1000, then at most 1000 contents can be stored.

Fig. 1. An example of an urban vehicular network.

stored in the cache of any RSU should not surpass its cache
size. Equation (3) shows the constraint of the cache budget,
i.e., the size of cache allocated to all RSUs adds up to C.
The optimization variables in the above problem reflect the
size of cache allocated to each RSU Bm and the combination
of cached contents Fm, therefore it is a joint optimization
problem.

III. PROPOSED ALGORITHM AND PERFORMANCE
ANALYSIS

Before we start to design the cache allocation algorithm,
first observe the complexity of solving the problem (1)-(3), as
shown in the following theorem.

Theorem 1: The problem described by (1)-(3) is NP-hard.
Proof: Consider a vehicular network composed of M

RSUs and there are exactly 2 RSUs in each contact pattern. It
is a special case of the considered problem. Denote the total
number of contact patterns by K and assume the probability
of the occurrence of each contact pattern is 1

K . Suppose
that there is only one content in the library and the request
probability is 1. Assume the wireless channel is perfect and the
successful transmission probability between any RSU and the
associated vehicle is 1. Under these assumptions, once an RSU
is allocated with a unit of cache and stores the very content,
vehicles passing by can download it with probability 1. Given
a total cache budget C, we investigate the problem of finding a
cache allocation strategy, so that the probability of successful
download for this content in any contact pattern equals 1,
which means that there exists at least 1 RSU allocated with a
cache in any contact pattern.

We can transform the above problem to an equivalent vertex
cover problem in a graph G = (V,E), as shown in Fig 2.
Vertices in the graph correspond to RSUs and two nodes on
each edge correspond to contact patterns. Here |V | =M and
|E| = K. Denote by V0 the set of vertices whose counterpart
RSU is allocated with a unit of cache, then |V0| ≤ C holds.
Since the probability of any contact pattern is equally 1

K , the
condition that the successful download probability within the
whole vehicular network equals 1 holds if and only if ∀(u, v) ∈
E, either u ∈ V0 or v ∈ V0. The vertex cover problem is a
known NP-hard problem. Therefore, given an instance of a

Fig. 2. An exemplary representation of a vehicular network.

vertex cover problem, it can be reducible to the problem in
our model in polynomial time. In conclusion, the joint cache
allocation and content placement problem is NP-hard.

Since it is a NP-hard problem and the number of variables
can be very large, we resort to an approximate algorithm as
illustrated in Algorithm 1.

Algorithm 1 A greedy cache allocation algorithm
1: Input: C,M,N,K,Pi(i ∈ {1, 2, . . . , N}),
2: qm(m ∈ {1, 2, . . . ,M}), lk(k ∈ {1, 2, . . . ,K}).
3: initialization: Fm = ∅(m ∈ {1, 2, . . . ,M}), S = 0.
4: while S < min{C,MN} do
5: for m ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N} do
6: Vm,j =
7:

∑
k∈Gm

lk
∏

t∈Nk

(1− qt1{fj∈Ft})Pjqm1{fj /∈Fm}.

8: end for
9: (m̂, ĵ) = arg max

(m,j)
Vm,j .

10: Dm̂,ĵ = Vm̂,ĵ .
11: S ← S + 1.
12: Fm̂ ← Fm̂ ∪ {fĵ}.
13: end while

In the initialization stage of Algorithm 1 on line 2, each
RSU has no cache, so the set of cached contents at each RSU is
empty. Then in an iterative manner given from line 5 to line 8,
the algorithm calculates the increment in successful download
probability of distributing each content to each RSU and finds
the content-RSU pair of the largest value. According to line 9
to line 11, one unit of cache is allocated to the corresponding
RSU in the pair and the corresponding content is distributed
to the cache. And Dm̂,ĵ on line 10 records the increment in
successful download probability due to the pair (m̂, ĵ). The
above operations repeat until the total cache budget is used
up. The performance of the algorithm is guaranteed within
a bounded gap to the optimum according to the following
theorem.

Theorem 2: Algorithm 1 achieves at least (1− 1
e) approx-

imation of the optimum.
Proof: Denote by Amj the event that content fj is cached

in the cache of RSU m, and denote by X the feasible set of
Amj ,m ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N}. We equivalently

reformulate the optimization problem (1)-(3) into (4)-(6).

max g(X) (4)

s.t. g(X) = 1−
K∑

k=1

lk

N∑
j=1

Pj

∏
m∈Nk

(1− qm1{Amj∈X}) (5)

|X | ≤ C. (6)

Choose any two sets X1,X2 that satisfy X1 ⊆ X2, |X2| ≤ C,
and choose one element Am,j /∈ X2, and Am,j /∈ X1. And

g(X1 ∪Amj)− g(X1)

=
∑
k∈Gm

lk
∏
t∈Nk

(1− qt1{Akj∈X1})Pjqm ≥ 0. (7)

And the following equation holds,

(g(X1 ∪Amj)− g(X1))− (g(X2 ∪Amj)− g(X2))

=
∑
k∈Gm

lk
∏
t∈Nk

Atj∈X1

(1− qt)(1−
∏

h∈Nk
Ahj∈X2−X1

(1− qh))Pjqm

≥ 0. (8)

Therefore, the objective function is a submodular function
according to the definition in [12], and the greedy property of
the proposed algorithm guarantees (1 − 1

e) approximation of
the optimal algorithm.

The complexity of the algorithm above is O(MN2KC).
The cost can still be very high especially when both the
amount of contents and the cache budget are large. Meanwhile,
the algorithm provides no insight into the critical factors that
affect the cache allocation and content placement. Therefore
we adopt further analysis on the algorithm and reveal follow-
ing property.

Proposition 1: The result of Algorithm 1 indicates that
although the size of cache allocated to RSUs may be different,
for a given RSU m,m ∈ {1, 2, . . . ,M}, it will store the most
popular |Fm| contents in the cache after the implementation
of Algorithm 1, i.e., Fm = {f1, f2, . . . , f|Fm|}.

Proof: Assume a virtual normalized cache budget C∗

satisfying C∗ ≥ MN , then after Algorithm 1 completes,
all contents will have been distributed to the cache of every
RSU due to the abundance of cache budget. During the
implementation of Algorithm 1, the content-RSU pairs on line
9 occur in certain order. For an arbitrary content fj , we define
a term ”pair sequence” to simplify illustration.

Definition 2: a pair sequence of fj is the sequence of
content-RSU pairs picked out by line 9 of Algorithm 1 that
contain fj . The pairs are indexed according to their occurrence
time during the implementation of Algorithm 1. Denote the
pair sequence of fj by [(bj,1, fj), (bj,2, fj), . . . , (bj,M , fj)].
Then bj,s is the s-th RSU that Algorithm 1 distribute fj to.

According to line 4-10 in Algorithm 1 and the definition
above, Dbj,s,j can be expressed as the following:

Dbj,s,j =
∑

k∈Gbj,s

lk
∏

t∈Nk∩{bj,1,...,bj,s−1}

(1− qt)Pjqbj,s . (9)

As the algorithm selects the content-RSU pairs in a greedy
manner, the following equation holds,

bj,1 = argmax
m

∑
k∈Gm

lkqmPj . (10)

Observe that there is a shared term Pj in the calculation of∑
k∈Gm

lkqmPj for every RSU m. Then Pj can be eliminated.

Therefore, the first selected RSUs in Algorithm 1 for any
content are exactly the same one. Then we replace bj,1, j ∈
{1, 2, . . . , N} by b1, and the following equation holds:

bj,2 = argmax
m

∑
k∈Gm

lk
∏

t∈Nk∩{b1}

(1− qt)qm. (11)

According to (11), the second selected RSU is still the
same for any content fj using the same method above. In
the same manner, bj,2, j ∈ {1, 2, . . . , N} can be replaced
by b2. The recursion can iterate until all RSUs have been
picked. As a result, the selection order of RSUs is the
same for any content by Algorithm 1, and the order can
be rewritten as an array [b1, b2, . . . , bM]. It is noticeable that
{b1, b2, . . . , bM} = {1, 2, . . . ,M}.

On the other hand, from the perspective of an arbitrary
RSU bm, it receives contents in a certain order during the
implementation of Algorithm 1. According to line 10 in
Algorithm 1, for any content j, the following equation holds,

Dbm,j =
∑

k∈Gbm

lk
∏

t∈Nk∩{b1,...,bm−1}

(1− qt)qbmPj . (12)

According to (12), a more popular content will always be
cached prior to a less popular one for any RSU bm. Therefore,
after the algorithm completes, Fm = {f1, f2, . . . , f|Fm|}. As
a result, the proof is completed.

Algorithm 2 Identifying bm,m ∈ {1, 2, . . . ,M}.
1: Input: C,M,K, qm(m ∈ {1, 2, . . . ,M}),
2: lk(k ∈ {1, 2, . . . ,K}).
3: initialization: m = 1, H = ∅, T = {1, 2, . . . ,M}.
4: while m ≤M do
5: for y ∈ T −H do
6: Wy =

∑
k∈Gy

lk
∏

t∈Nk∩H
(1− qt)qy .

7: end for
8: g = argmax

g
Wg .

9: bm ← g.
10: H ← H ∪ {g}.
11: m← m+ 1.
12: end while

Then the objective is to find the sequence [b1, b2, . . . , bM].
Algorithm 2 shows the process to identify bm,m ∈
{1, 2, . . . ,M}. It calculates the increment in successful down-
load probability within the whole network of assigning the
same content to each RSU, according to line 4 to line 7,
and then on line 8 and line 9, the algorithm picks the RSU
contained in the pair with the largest increment. Then the RSU

is removed from the set of candidates. Above operations loop
until the selection order of RSUs is determined. Here we define
a new term Gbm = Dbm,j/Pj for simplicity, and according to
(12), the following equation holds,

Gbm =
∑

k∈Gbm

lk
∏

t∈Nk∩{b1,...,bm−1}

(1− qt)qbm . (13)

Since the request probability obeys Zipf distribution, the
following equation holds for bm,m ∈ {1, 2, . . . ,M} and
fj , j ∈ {1, 2, . . . , N},

Dbm,j = Gbm

j−a∑N
r=1 r

−a
. (14)

According to Proposition 1 and (14), the normalized cache
size of each RSU can be acquired by solving the following
problem.

max
{Cb1

,Cb2
,...,CbM

}

M∑
m=1

Gbm

Cbm∑
j=1

j−a∑N
r=1 r

−a
(15)

s.t.
M∑

m=1

Cbm = C, ∀m (16)

Cbm ∈ {0, 1, 2, . . .},∀m, (17)

where Cbm is the normalized size of cache allocated to RSU
bm. We use integral to approximate the second term in (15)
and relax the integer constraint of (17) to (20). It is reason-
able since the normalized cache budget C and the amount
of contents can be very large. The transformed problem is
reformulated below.

max
{Cb1

,Cb2
,...,CbM

}

M∑
m=1

Gbm

∫ Cbm

1
x−adx∫ N

1
x−adx

(18)

s.t.
M∑

m=1

Cbm = C,∀m (19)

Cbm ≥ 0,∀m. (20)

Using Lagrange multiplier, the normalized size of cache
allocated to each RSU can be obtained as:

Cbm =

 G
1
a

bm
C∑M

k=1(Gbk)
1
a

 , (21)

where bxc represents the floor function. bm is derived from
Algorithm 2, then Gbm can be derived from (13). According
to (21), the normalized size of cache allocated to bm is propor-
tional to G

1
a

bm
, in which the impact of successful transmission

probability and road traffic at RSU m is incorporated into
the term Gbm , and the term 1

a reflects the effect of skewness
of content popularity distribution. From the expression, cache
will be allocated in a more uniform manner when α grows
large. Compared with Algorithm 1, the complexity decreases
from O(MN2KC) to O(M3K). The impact of the number
of content and cache budget size is eliminated, the values of
which two are usually quite large in reality.

TABLE I
MAJOR PARAMETERS FOR EXPERIMENTS

M = 10 Number of RSUs

K = 100 Number of contact patterns

Q ∈ (0, 1) Successful transmission probability

a ∈ (0.1, 1.3) Zipf parameter for content popularity

N = 20000 Number of contents in library

C ∈ (1000, 10000) Normalized cache budget

V = 20000 Number of vehicles in the network

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to evaluate
the performance of the proposed algorithms and compare
it with the greedy algorithm on equal cache (GAEC) from
[6], and popularity-based caching algorithm on equal cache
(PAEC). Both of them allocate equal-sized cache to each RSU.
The GAEC scheme chooses the content in a greedy manner,
while the PAEC scheme distributes most popular contents
to each cache. The two algorithms differ because a vehicle
may encounter several RSUs in certain contact pattern, then
distributing most popular contents to every RSU may not be
greedy. We investigate how different parameters including the
content popularity, successful transmission probability of each
RSU and total cache budget affect the successful download
probability of the whole network. Major simulation parameters
are listed in Table 1. Here the probability of the occurrence
of each contact pattern is assumed to obey Zipf distribution,
i.e., the probability of contact pattern i is li = i−r/

∑K
k=1 k

−r

with r = 1, which is verified by [5].
Fig 3(a) to Fig 3(c) show how different factors affect the size

of cache allocated to RSUs given by our algorithm. Fig. 3(a)
indicates that the larger successful transmission probability
attains, the steeper cache size allocation among RSUs will
be, because when the successful transmission probability is
low, cache should be more evenly distributed, in order to have
multiple backups for popular contents. Fig. 3(b) shows that
when the Zipf parameter a of content popularity is large, more
requests are concentrating on a few popular contents, then
cache should be allocated more uniformly to store popular
contents on more RSUs, which is in consistence with our
theoretical results. Fig. 3(c) shows that if there is strong
variance of successful transmission probability of different
RSUs, then larger cache is supposed to be allocated to those
with better wireless channel conditions.

Fig. 4(a) displays how Zipf parameter a of content pop-
ularity impacts the successful download probability. In these
experiments, Q is randomly chosen in the range of (0.8, 0.9)
and C is set to 10000. According to the figure, the proposed
algorithm achieves 10% higher of successful download prob-
ability within the whole network than GAEC and PAEC when
a < 0.8, indicating that the cache size should be carefully
considered especially when the content popularity is more
evenly distributed. As a grows, requests concentrate on a
small set of very popular contents and the gap between these

1 2 3 4 5 6 7 8 9 10

The indexes of RSUs

0

500

1000

1500

2000

2500

3000

3500

4000

N
o
rm

a
liz

e
d
 c

a
c
h
e
 s

iz
e

Q∈(0.2,0.3)

Q∈(0.4,0.5)

Q∈(0.6,0.7)

Q∈(0.8,0.9)

(a)

1 2 3 4 5 6 7 8 9 10

The indexes of RSUs

0

500

1000

1500

2000

2500

3000

3500

N
o
rm

a
li
z
e
d
 c

a
c
h
e
 s

iz
e

a=0.3

a=0.6

a=0.9

a=1.2

(b)

1 2 3 4 5 6 7 8 9 10

The indexes of RSUs

0

500

1000

1500

2000

2500

3000

3500

N
o
rm

a
liz

e
d
 c

a
c
h
e
 s

iz
e

Q∈(0.2,0.3)

Q∈(0.2,0.4)

Q∈(0.2,0.6)

Q∈(0.2,1.0)

(c)

Fig. 3. The impact of different factors on the size of cache allocated to each
RSU. (a) The value of the successful transmission probability. (b) The value
of Zipf parameter of the request probability. (c) The variance of the successful
transmission probability.

algorithms becomes narrow. Also, the performance of GAEC,
which is based on cooperative caching of different contents
on equal-sized cache, provides little gain over PAEC when a
gets large.

The effect of successful transmission probability Q on the
successful download probability within the network is given
by Fig. 4(b). Here the normalized cache budget C is set to
10000 and the Zipf parameter of content popularity a is set

0.2 0.4 0.6 0.8 1 1.2 1.4

Zipf parameter a

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
fu

l
d

o
w

n
lo

a
d

 p
ro

b
a

b
ili

ty

Proposed algorithm

GAEC

PAEC

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Successful transmission probability Q

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

S
u

c
c
e

s
s
fu

l
d

o
w

n
lo

a
d

 p
ro

b
a

b
ili

ty

Proposed algorithm

GAEC

PAEC

(b)

1000 2000 3000 4000 5000 6000 7000 8000

Normalized cache budget C

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

S
u

c
c
e

s
s
fu

l
d

o
w

n
lo

a
d

 p
ro

b
a

b
ili

ty

Proposed algorithm

GAEC

PAEC

(c)

Fig. 4. The impact of different factors on the successful download probability.
(a) The impact of the content popularity. (b) The impact of the successful
transmission probability. (c) The impact of the total cache budget.

to 0.8. Fig. 4(b) reveals that the performance of the three
algorithms are all degraded by low successful transmission
probability, with the proposed algorithm slightly better than
the other two. However, the performance gap broadens as the
successful transmission probability grows.

Fig. 4(c) demonstrates the impact of normalized cache
budget on the successful download probability. The normalized
cache size of each RSU in GAEC and PAEC is set to
bC/Mc. Here Q is randomly chosen within the range of
(0.8, 0.9) and a is set to 0.8. Fig. 4(c) reveals that larger

cache renders higher successful download probability for all
three algorithms. The figure also show that using the proposed
algorithm, the successful download probability is more than
10% higher than the other two and the performance gap is
immune to the variance of the cache budget.

V. CONCLUSIONS

This paper investigates nonuniform cache allocation and
content placement in vehicular networks exploiting the moving
information of vehicles. The problem is proved to be NP-hard
and thus a low-complexity approximate algorithm is proposed.
The performance of the algorithm is guaranteed to achieve a
factor of (1− 1

e) within the optimal strategy. The expression
of the cache size from the proposed algorithm is derived by
theoretical analysis, according to which, more concentration
of content popularity and smaller value of successful wireless
transmission probability result in more even distribution of
cache. Numerical experiments show that the proposed algo-
rithm performs 10% better than baseline algorithms due to
the consideration of non-uniformity of cache size, and the joint
optimization of cache allocation and content placement.

ACKNOWLEDGEMENT

This work is sponsored in part by the Nature Science
Foundation of China (No. 91638204, No. 61571265, No.
61621091), and Qualcomm Technologies, Inc.

REFERENCES

[1] Y. Huang, Y. Gao, K. Nahrstedt and W. He, “Optimizing File Retrieval
in Delay-Tolerant Content Distribution Community,” IEEE ICDCS’09,
2009.

[2] K. Liu, J. K.-Y. Ng, J. Wang, V. Lee, W. Wu, and S. H. Son, “Network-
coding-assisted Data Dissemination via Cooperative Vehicle-to-vehicle/-
infrastructure Communications,” IEEE Trans. Intell. Transp. Syst., vol.
17, no. 6, pp. 1509–1520, Jun. 2016.

[3] D. Zhang and C. Kiat Yeo, “Enabling Efficient WiFi-Based Vehicular
Content Distribution,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no.
3, pp. 479-492, March. 2013.

[4] R. Ding, T. Wang, L. Song, Z. Han and J. Wu, “Roadside-unit Caching
in Vehicular Ad Hoc Networks for Efficient Popular Content Delivery,”
IEEE WCNC’09, 2009.

[5] G. Mauri, M. Gerla, F. Bruno, M. Cesana and G. Verticale, “Optimal
Content Prefetching in NDN Vehicle-to-Infrastructure Scenario,” IEEE
Trans. Veh. Technol., vol. 66, no. 3, pp. 2513-2525, March. 2017.

[6] R. Kim, H. Lim and B. Krishnamachari, “Prefetching-Based Data
Dissemination in Vehicular Cloud Systems,” IEEE Trans. Veh. Technol.,
vol. 65, no. 1, pp. 292-306, Jan. 2016.

[7] X. Peng, J. Zhang, S. H. Song and K. B. Letaief, “Cache Size Allocation
in Backhaul Limited Wireless Networks,” IEEE ICC’16, 2016.

[8] Vu, Thang X. and Chatzinotas, Symeon and Ottersten, Bjorn, “Coded
Caching and Storage Planning in Heterogeneous Networks,” IEEE
WCNC’17,2017.

[9] Y. Huang, Gao, K. Nahrstedt and W. He, “Optimizing file retrieval in
delay-tolerant content distribution community,”IEEE ICDCS’09, 2009.

[10] W. Li, “Random Texts Exhibit Zipf’s-law-like Word Frequency Distri-
bution,” IEEE Trans. Inf. Theory., vol. 38, no. 6, pp. 1842-1845, Nov
1992.

[11] L. Breslau, Pei Cao, Li Fan, G. Phillips and S. Shenker, “Web Caching
and Zipf-like Distributions: Evidence and Implications,” IEEE INFO-
COM ’99, 1999.

[12] M. L. Fisher, G. L. Nemhauser, L. A. Wolsey, “An analysis of approx-
imations for maximizing submodular set functions—II“ Mathematical
Programming, vol. 14, no. 1, pp. 265-294, 1978.

