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Abstract—Mobile edge computing is a novel technique in which
mobile devices offload computation-intensive tasks with stringent
delay requirements to the edge cloud. However, the limited com-
putational resource in the edge cloud may result in the Quality
of Service degradation. In this paper, we address this issue by
coordinating the heterogeneous cloud which includes the edge
cloud and the remote cloud. Considering the offloading of delay-
bounded tasks, we study into the scheduling of heterogeneous
cloud in order to maximize the probability that tasks can have
the delay requirements met. The problem formulation is proved
to be concave, and an optimal algorithm is proposed accordingly.
The optimal policy with heterogeneous cloud is notably different
from the policy merely using the edge cloud. With only the edge
cloud, the system serves tasks with loose delay bounds and drops
tasks with stringent delay bounds when the traffic load is heavy.
However, with the heterogeneous cloud, tasks with stringent delay
bounds are offloaded to the edge cloud and tasks with loose delay
bounds are offloaded to the remote cloud. In numerical results,
the probability that the delay bounds of tasks are satisfied can be
improved by about 40% with the assistance of the remote cloud.

I. INTRODUCTION

With the development of smart phones and wearable de-
vices, an increasing number of mobile applications are widely
used by mobile users. By February 2017, more than 2.7 million
applications are available in the Android market [1]. However,
the proliferation of applications poses big challenges to the
computational resource and battery life of mobile devices. To
address the challenges, Mobile Cloud Computing (MCC) has
recently been proposed [2]. In MCC systems, mobile devices
can offload computation-intensive tasks to the cloud servers
so that their performance is highly improved. However, the
conventional centralized cloud is generally deployed remotely
from users. For delay-sensitive applications, the data transmis-
sion delay over the Internet is a major obstacle to satisfy the
bounded delay requirements [3]. To serve the delay-sensitive
applications, the Mobile Edge Computing (MEC) architecture
has been proposed [4] [5]. In MEC, the cloud servers are
deployed locally, which decreases the data transmission delay
between mobile users and the cloud, and is consequently more
efficient in delay-sensitive applications.

The MEC is a distributed cloud system, and each edge
cloud only serves the users in a small area. Here, the edge

servers in the network is referred to as the edge cloud. In
contrast, the conventional centralized cloud is referred to as
the remote cloud. Since the scale of the edge cloud is small,
the multiplexing gain of the edge cloud is not as large as
the remote cloud. A survey of Microsoft [6] shows that the
total cost of a cloud increases with the decrease of the scale.
Thus, the computational resource in the edge cloud is generally
limited, while the resource in the remote cloud is abundant
[7]. In fact, the edge cloud and the remote cloud have different
features. To better serve users with different Quality of Service
(QoS) requirements, the heterogeneous cloud are suggested to
be jointly scheduled [8].

There are some recent papers focusing on the optimization
of the QoS in the MEC system. In [9], the authors study ways
to minimize the overall energy consumption of mobile users in
the MEC system by the joint optimization of radio and com-
putational resources. In [10], the authors propose an algorithm
for uplink and downlink beamforming and computational
resource allocation so that the total energy consumption of
users is minimized. In [11], the authors consider the scenario
of TDMA networks and the optimal radio and computational
resource allocation policy is derived in close-form. In [12], the
authors study the energy-delay tradeoff in MEC systems, and
they design algorithms to decide if tasks should be offloaded
to the edge cloud. These works consider the usage of the
edge cloud, which may result in the degradation of the QoS
when the traffic load is heavy. Further more, the mean delay
bounds are considered to be the constraints in the models.
However, the stochastic wireless channel results in the random
data transmission delay, and the time-varying traffic load also
leads to the uncertainty of the cloud execution delay. The
randomness of data transmission delay and cloud execution
delay is a challenge to meet the fixed delay bounds of mobile
users. In [13] and [14], the workload sharing between the
edge and the remote cloud is studied. The papers optimize
the tradeoff between the mean offloading delay and the cost
of the system. The optimization of the mean delay can hardly
guarantee the QoS of mobile users with different requirements.
To offload tasks with different delay bounds, the proposed
algorithms are hard to be implemented.



In this paper, we study into how the tasks are scheduled to
heterogeneous cloud and how the computational resource in
the edge cloud is allocated to users. Considering the offloading
of tasks with bounded delay requirements, each task is firstly
transmitted in the wireless networks and then executed in the
cloud. If the total offloading delay is not larger than the given
delay bound, the task is successfully processed; otherwise,
the task fails. Taking the stochastic wireless channel and the
time-varying traffic load into consideration, the offloading
delay is modeled after random variable. The optimization
problem is to maximize the probability that the corresponding
delay bounds of tasks are satisfied. We find that the optimal
offloading policies under heterogeneous-cloud scenario and
edge-cloud scenario are notably different when the traffic load
is heavy. If the tasks are only offloaded to the edge cloud, the
computational resource is allocated to the tasks with loose
delay bounds, and the tasks with stringent delay bounds are
dropped. However, if both the edge and the remote cloud
are available, the edge cloud allocates more computational
resource to the tasks with stringent delay bounds, and the
tasks with loose delay bounds are scheduled to the remote
cloud. As the edge cloud is designed to serve delay-sensitive
tasks, the optimal policy under edge-cloud scenario obviously
contradicts the original purpose. Thus, the heterogeneous
cloud are necessary to work together so that the users with
different delay requirements can be simultaneously served.

The rest of the paper is organized as follows. Section II
introduces the system model and formulates the problem.
In Section III, we study the tasks scheduling policy in
the single-user case. In Section IV, we study the tasks
scheduling and resource allocation policy in the multi-
user case. In Section V, the numerical results are shown
to validate our analysis. The paper is concluded in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MEC system with wireless network, the edge
cloud and the remote cloud, which is shown in Fig. 1. When
a task arrives, the user firstly transmits the data to the access
point by the wireless network. As long as the transmission
of the data is finished, the task goes to either the edge cloud
or the remote cloud. Virtualized machines (VM) in the edge
cloud are assigned to the users, which are used to execute the
tasks. Meanwhile, the VMs in the remote cloud are already
prepared for the users.

A. User Model

There are N mobile users in the MEC system, which are
denoted by the set N = [1, ..., N ]. We assume that each
user offloads the same kind of tasks to the cloud, while tasks
between users might be different. From the statistical data of
Google data centers [15], it is shown that the arrival intervals
between tasks are exponentially distributed. Thus, we assume
that the arrival process of tasks are Poisson process, and the
arrival rate of tasks from the ith user is λi. Here, λi denotes
the number of arrived tasks in a period of time. Each task
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Fig. 1. System model.

should transmit a certain amount of data to the cloud server
before it is executed. Due to the relative small size of the
downloading data [11], we mainly consider the uploading
transmission delay. We assume that the uploading data size
of the ith user is Li bits.

The total offloading delay is composed of two parts: wireless
transmission delay and cloud execution delay. For delay-
bounded tasks, each task is successfully executed as long as the
total offloading delay is smaller than the given delay bound.
For the ith user, we assume that the delay bound is denoted
by Ti, the wireless transmission delay is Tw,i, and the cloud
execution delay is Tc,i. We define psucc,i as the probability that
the offloading delay of the tasks from the ith user is smaller
than the delay bound, which indicates the proportion of tasks
satisfying the corresponding delay bound.

psucc,i = P (Tw,i + Tc,i ≤ Ti) (1)

B. Wireless Transmission Model

Assume that users are allocated with orthogonal resource
(e.g., OFDMA systems), and the bandwidth resource allocated
to each user is B. For the ith user, the data is transmitted to the
access point in packets. Assume that |hi|2 is the channel gain,
γi is the SNR and ri is the transmission rate. At the access
point, the packet can be successfully decoded as long as the
channel capacity is larger than ri. Otherwise, the transmission
is failed and the packet should be retransmitted. The condition
that a packet is successfully decoded by the access point is
that:

B log(1 + |hi|2γi) ≥ ri (2)

For the ith user, the transmission period of each packet is
Tp,i = Li/ri. If a packet is transmitted within the time Tw,i,
at least one packet is successfully decoded by the access point
among ⌊Tw,i/Tp,i⌋ packets. Here, ⌊x⌋ indicates the largest
integer that is not larger than x. Thus, the the cumulative
distribution function of the transmission delay Tw,i is:

P (t ≤ Tw,i) = 1− [1− P (B log(1 + |h|2γ) ≥ r)]⌊Tw,i/Tp,i⌋

(3)

C. Cloud Execution Model

As the arrival of tasks follows Poisson process and the
transmission delay is exponentially distributed, the input of



the edge cloud is also Poisson process. According to the
data from Google servers [15], the leaving intervals between
tasks are exponentially distributed. Thus, the execution delay
of the edge cloud is modelled after M/M/1 queue, which
is adopted by many related works to evaluate the delay of
cloud servers (e.g., [16], [17]). We assume that the total
computational resource of the edge cloud is µmax, which
denotes the maximum service rate. There are totally N users,
and we assume that the computational resource allocated to
the ith user is µi. The execution delay of the offloaded tasks
from the ith user follows the distribution:

P (t ≤ Tc,i) = 1− e−(µi−λi)Tc,i (4)

If a task of the ith user is offloaded to the remote cloud, the
cloud execution delay includes both the Internet transmission
delay and the remote cloud execution delay. It is shown that the
Internet transmission delay follows an empirical distribution
[18], which is assume to be P (t ≤ TI). As the remote cloud
has abundant resource, the execution delay distribution P (t ≤
Tre) is weakly influenced by the variation of the workload.
Thus, we assume that the remote cloud execution delay of the
ith user follows the distribution: P (t ≤ TI + Tre).

D. Problem Formulation

Considering the stochastic wireless channel and the random
cloud execution delay, the delay bound of each task can only
be satisfied with a probability. To optimize the QoS of the
system, the success probability, which denotes the probability
that delay bounds of tasks are satisfied, should be maximized.
The success probability of tasks from all users is:∑N

i=1 λipsucc,i∑N
i=1 λi

(5)

As
∑N

i=1 λi is a fixed value, the optimization problem is
formulated as problem P1. In the formulation,

∑N
i=1 λipsucc,i

denotes the total number of tasks satisfying the corresponding
delay bounds in a period of time. As µi denotes the compu-
tational resource of the edge cloud that is allocated to the ith
user, the constraint

∑N
i=1 µi ≤ µmax indicates the limitation

of the total computational resource.

max
N∑
i=1

λipsucc,i

s.t.
N∑
i=1

µi ≤ µmax

(P1)

III. TASKS SCHEDULING IN THE SINGLE-USER CASE

For the ith user, the optimization objective is λipsucc,i. In
this part, we study into how the tasks of a single user should
be scheduled to both the edge cloud and the remote cloud so
that the success probability is maximized.

A. Wireless Transmission Delay

In our scenario, we consider Reyleigh fading channel in
which |hi|2 follows exponential distribution with mean value
1. The success decoding probability of each packet is:

P (B log(1 + |hi|2γi) ≥ ri) = e−
1
γi

(2
ri
B −1) (6)

In Lemma 1, the transmission delay is approximated to
be exponential distribution. In fact, exponentially distributed
transmission delay is also adopted by many papers to cap-
ture the retransmission phenomenon [19] [20]. The optimal
transmission rate and packet transmission delay are derived
accordingly.

Lemma 1 For the ith user whose SNR is γi, the optimal
packet transmission delay distribution is approximated to be:

P (t ≤ Tw,i) ≈ 1− e−ωiTw,i (7)

where

ωi =
B

Li
[
ropt,i

B
e−

1
γi

(2
ropt,i
B −1)

]

ropt,i =
BW(γi)

ln(2)

(8)

and W indicates the Lambert W function.

Proof: See Appendix A. �

In Lemma 1, ωi denotes the service rate of the wireless
channel. In other words, ωi indicates the number of suc-
cessfully transmitted packets in one period of time, which is
proportional to B and 1/Li. In the mobile device of each user,
the packets are queued to be transmitted. Thus, the wireless
transmission delay is:

P (t ≤ Tw,i) = 1− e−(ωi−λi)Tw,i (9)

B. Offloading Delay

Each task is firstly transmitted in the wireless network, and
then goes to either the edge or the remote cloud. We assume
that the arrival rate of tasks which are scheduled to the edge
cloud is λe,i, and the arrival rate of remotely-offloaded tasks
is λi − λe,i accordingly.

For the tasks which are scheduled to the edge cloud, the
offloading delay distribution is:

Pe,i(t ≤ Ti) = P (Tw,i + Tc,i ≤ Ti)

=

∫ Ti

0
(1− e−(ωi−λi)t)(µi − λe,i)e−(µi−λe,i)(Ti−t) dt

= 1−
(ωi − λi)e−(µi−λe,i)Ti − (µi − λe,i)e−(ωi−λi)Ti

(ωi − λi)− (µi − λe,i)

For the tasks which are scheduled to the remote cloud, the
offloading delay distribution is Pr,i(t ≤ Ti) = P (Tw,i + TI +
Tre ≤ Ti). Let Pr,i(t ≤ Ti) = Ci.



C. Optimal Offloading Policy of a Single Users

The success probability of one single user is maximized
by jointly scheduling tasks to the edge and the remote
cloud. The optimization problem is formulated as problem
P2. λe,iPe,i(t ≤ Ti) denotes the number of tasks satisfying
the delay bound which are scheduled to the edge cloud, and
(λi−λe,i)Pr,i(t ≤ Ti) indicates the number of tasks satisfying
the delay bound which are scheduled to the remote cloud.

max
λe,i

λe,iPe,i(t ≤ Ti) + (λi − λe,i)Pr,i(t ≤ Ti) (P2)

Lemma 2 Problem P2 is a concave optimization problem.

Proof: See Appendix B. �
In Lemma 2, the problem P2 is proved to be concave. As

the only variable is λe,i, the problem can be solved by gradient
descent algorithm.

D. Optimal Offloading Policy with Sufficient Bandwidth Re-
source

When the users are allocated with sufficient bandwidth
resource, ωi ≫ 1 holds. Thus, e−(ωi−λi)Ti ≈ 0, and the
previous problem P2 is turned into the following problem P3,
which could be solved in close-form.

max
λe,i

λe,i(1− e−(µi−λe,i)Ti) + Ci(λi − λe,i) (P3)

Lemma 3 The solution of P3 is

λopt
e,i = min{λi,max[0,

W((1− Ci)eµiTi+1)− 1

Ti
]} (10)

where W indicates the Lambert W function.

Proof: See Appendix C. �
In Lemma 3, the number of tasks that should be offloaded

to the edge cloud is shown. In fact, it is determined by the
parameters µiTi and Ci. When µiTi becomes larger or Ci is
smaller, more tasks should be scheduled to the edge cloud.

IV. TASKS SCHEDULING AND RESOURCE ALLOCATION IN
THE MULTI-USER CASE

In the multi-user case, the system, which maximizes the
success probability of tasks from all users, should decide how
the computational resource in the edge cloud is allocated to
the users and how the tasks are scheduled to heterogeneous
cloud. In this part, we will jointly study the resource allocation
problem and tasks scheduling problem.

A. Optimal Offloading Policy of Multiple Users

Taking the offloading delay distribution of a single-user (as
shown in P2) into P1, the optimization problem in multi-user
case is formulated in P4. In the formulation, λe,iPe,i(t ≤ Ti)
denotes the number of successfully executed tasks that are
offloaded to the edge cloud, which is related to the allocated
computational resource µi. (λi−λe,i)Pr,i(t ≤ Ti) denotes the
number of successfully executed tasks that are offloaded to
the remote cloud. As the total computational resource in the

edge cloud is limited,
∑N

i=1 µi ≤ µmax holds. Furthermore, the
arrival rate of tasks scheduled to the edge cloud is constrainted
by 0 ≤ λe,i ≤ λi.

max
µi,λe,i

N∑
i=1

λe,iPe,i(t ≤ Ti) + (λi − λe,i)Pr,i(t ≤ Ti)

s.t.
N∑
i=1

µi ≤ µmax

0 ≤ λe,i ≤ λi ∀i

(P4)

Lemma 4 Problem P4 is a concave optimization problem.

Proof: See Appendix D. �

In Lemma 4, the problem P4 is proved to be concave. As the
success probability of each user increases with the allocated
resource µi, the constraint

∑N
i=1 µi = µmax holds. Meanwhile,

the problem has constraints of λe,i, which are inequalities.
To solve the concave problem with inequality constraints, we
rely on the Interior Point Method to solve the problem. Let
Λ = [λe,1, λe,2, ..., λe,N ] and Π = [µ1, µ2, ..., µN−1, µmax −∑N−1

i=1 µi]. We define the barrier function as:

ϕk(Λ,Π) =
N∑
i=1

λe,iPe,i(t ≤ Ti) + (λi − λe,i)Pr,i(t ≤ Ti)

+ ϵk(ln(λe,i) + ln(λi − λe,i))
(11)

Based on the barrier function ϕ(Λ,Π), the problem P4 is
turned into a optimization problem which can be solve by
the gradient descent algorithm. We define that GD(ϕk(Λ,Π))
is the gradient descent algorithm which gets the solution
of maxϕ(Λ,Π). The reformulated problem is solved by the
following algorithm.

Algorithm 1 Find the optimal tasks scheduling and resource
allocation policy
Input: [λ1, ..., λN ], [T1, ..., TN ], [ω1, ..., ωN ], [C1, ..., CN ], µmax
Output: Λ,Π

1: ϵk ← 10−k, ∀k
2: ∆← 10−7

3: k ← 1
4: Λopt

1 ,Πopt
1 ← GD(ϕ1(Λ,Π))

5: k ← 2
6: Λopt

2 ,Πopt
2 ← GD(ϕ2(Λ,Π))

7: ξ ← ∥Λopt
2 − Λopt

1 ∥+ ∥Π
opt
2 −Πopt

1 ∥
8: while ξ > ∆ do
9: k ← k + 1

10: Λopt
k ,Πopt

k ← GD(ϕ1(Λ,Π))
11: ξ ← ∥Λopt

k − Λopt
k−1∥+ ∥Π

opt
k −Πopt

k−1∥
12: end while
13: Λ← Λopt

k

14: Π← Πopt
k
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(c) Optimal Policy with different wireless trans-
mission delay

Fig. 2. Optimal computational resource allocation policies of the edge cloud: (a) the optimal policy when tasks are scheduled to both the edge and the remote
cloud. (b) the optimal policy when tasks are scheduled to the edge cloud. (c) the optimal policy when the different wireless transmission delay of users are
considered.

B. Optimal Offloading Policy with Sufficient Bandwidth Re-
source

With sufficient bandwidth resource, e−(ωi−λi)Ti ≈ 0 holds,
and the problem is turned into the following optimization
problem P5. If the tasks are only offloaded to the edge cloud,
the problem is formulated as P6, which can be solved in close-
form. By comparing the optimal policy of problem P5 and
problem P6, we emphasize the influence of the remote cloud
on the system.

1) Heterogeneous Cloud Scenario: The optimization prob-
lem in the heterogeneous cloud scenario is:

max
µi,λe,i

N∑
i=1

λe,i(1− e−(µi−λe,i)Ti) + Ci(λi − λe,i)

s.t.
N∑
i=1

µi ≤ µmax

(P5)

Taking λopt
e,i into P5, the optimization problem is simplified.

As λopt
e,i is the function of the allocated computational resource

µi, the variables are actually µi. With the Lagrange multipliers,
the simplified problem can be solved by the gradient descent
algorithm directly.

2) Edge Cloud Scenario: If the users can only offload the
tasks to the edge cloud, the optimization problem is:

max
µi

N∑
i=1

λi(1− e−(µi−λi)Ti)

s.t.
N∑
i=1

µi ≤ µmax

(P6)

To solve the problem P6, the Lagrange function is:

L =
N∑
i=1

λi(1− e−(µi−λi)Ti) + η(µmax −
N∑
i=1

µi) (12)

Let ∂L
∂µi

= 0, the computational resource allocated to the
ith user is:

µ∗
i = λi +

ln(λiTi)− ln(η∗)

Ti

(13)

where η∗ is the optimal value of the Lagrange multiplier.
From the solution, it is shown that the edge cloud will not

serve users that λiTi < η∗ holds. Thus, when the total arrival
rate of tasks is large, the edge cloud will drop the users whose
delay bounds are stringent. The edge cloud is deployed to serve
the users with stringent delay bounds, but it refuses to serve
them when the traffic load is heavy. In fact, the optimal policy
of the edge cloud and its purpose contradict with each other.

V. NUMERICAL RESULTS

In this part, the numerical results are simulated to show
the optimal policies and evaluate their performances. We
consider tasks whose delay bounds vary from 0.3 second to
3 seconds. The range of arrival rates satisfy λi ∈ [1, 30].
For the parameters of wireless transmission delay, the size
of transmitted data ranges from 103 bits to 106 bits, the
distribution of SNR is γi ∈ [1, 30], and the bandwidth allocated
to each user is 1MHz.

In Fig. 2, the optimal policies in different scenarios are
compared. In the figure, x-axis denotes the arrival rates of
tasks, and y-axis denotes the allocation of computational
resource in the edge cloud. To better find out the features
of the policies, we only consider 3 users with the same arrival
rate and different other parameters. In Fig. 2(a), the optimal
policy in the system with both the edge and the remote cloud is
shown. When the tasks are scheduled to heterogeneous cloud,
more computational resource is allocated to the users with
stringent delay bounds. Especially when the arrival rate is
large, the edge cloud serves users whose delay bounds are
stringent, and the tasks with loose delay bounds are scheduled
to the remote cloud. In Fig. 2(b), the optimal policy in the
system with only the edge is shown. When the arrival rate of
tasks is small, the policy is similar to the one which schedule
tasks to heterogeneous cloud. However, when the arrival rate is
large, the edge cloud allocates more computational resource
to the users whose delay bounds are loose. Meanwhile, the
edge cloud drops the tasks with stringent delay bounds so
that the total success probability is maximized. In figure. 2(c),
the optimal policy is shown when considering different ωi of



users. Here, the ωi indicates the service rate of the wireless
channel, which is shown in Lemma 1. And 1

ωi
denotes the

mean transmission delay of each packet. The result indicates
that when the arrival rate is small, more computational re-
source is allocated to the users with longer data transmission
delay. But when the arrival rate is large, the policy is changed
and more computational resource is allocated to the users with
shorter data transmission delay.

In Fig. 3, the relationship between the probability that a
task is successfully processed within the delay bound and
the computational resource in the VM is revealed. With the
increase of the allocated computational resource in the VM,
more tasks can be offloaded to the edge cloud, and the
success probability almost increases linearly until it reaches 1.
Meanwhile, with larger arrival rate and smaller delay bound, a
user needs more computational resource for the same success
probability. When the computational resource satisfy µ = 0,
all tasks are scheduled to the remote cloud and the success
probability is Ci.
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Fig. 3. Success probability vs. computational resource.

In Fig. 4, the performance of three policies are compared.
In the figure, x-axis denotes the computational resource in the
edge cloud, and y-axis denotes the total success probability
of tasks from all users. The first policy is the optimal one
which schedules tasks to both the edge and the remote cloud.
In the second policy, tasks are scheduled to both the edge and
the remote cloud, but the computational resource in the edge
cloud is equally allocated to each user. The third policy is the
optimal policy which schedules tasks to only the edge cloud.
The numerical result shows that the optimal heterogeneous-
cloud offloading policy outperforms the other two, especially
when the computational resource is limited. By offloading
tasks to heterogeneous cloud, the total success probability
can be improved by about 40% compared with the edge-
cloud offloading policy. The policy that equally allocates the
computational resource performs bad, especially when the
arrival rates of tasks from the users are different.

VI. CONCLUSIONS

In this work, we consider the mobile cloud computing
scenario in which both the edge and the remote cloud serve
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Fig. 4. Total success probability under different policies

mobile users. By jointly scheduling tasks to heterogeneous
cloud and allocating computational resource in the edge cloud,
we optimize the system so that the probability of tasks satisfy-
ing the corresponding delay bounds is maximized. By solving
the optimization problem, we find that: 1) In the scenario
with heterogeneous cloud, the edge cloud should allocate more
computational resource to users with stringent delay bounds.
However, in the scenario with only the edge cloud, more
computational resource is allocated to users with loose delay
bounds when traffic load is heavy. By using heterogeneous
cloud, the edge cloud can better serve delay-sensitive tasks.
2) When the traffic load is light, more computational resource
is allocated to the users with longer data transmission delay.
However, when the traffic load is heavy, more computational
resource is allocated to the users with shorter data transmission
delay. The heterogeneous-cloud based offloading policy out-
performs the edge-cloud based offloading policy, which can
improve the probability that the delay bounds of tasks are
satisfied by about 40%.

APPENDIX

A. Proof of Lemma 1

The success decoding probability of a packet is P (B log(1+
|hi|2γi) ≥ ri). The number of transmitted packets in one
period of time is denoted by ωi = P (B log(1+|hi|2γi)≥ri)

Tp,i
.

Considering that the

P (t ≤ Tw,i) = 1− (1− ωiTp,i)
⌊Tw,i/Tp,i⌋

≈ lim
Tp,i→0

1− (1− ωiTp,i)
1

ωiTp,i
ωiTi

≈ 1− eωiTi

(14)

In rayleigh fading channel,

ωi =
ri
Li

e−
1
γi

(2
ri
B −1) (15)



The maximum ωi results in the optimal packet transmission
delay. Let ∂ωi

∂ri
= 0, and the optimal transmission rate is

derived:
ropt,i =

BW(γi)

ln(2)
(16)

B. Proof of Lemma 2

Let ai = (ωi − λi)Ti, and define gi(x) as

gi(x) = 1− aie−x − xe−ai

ai − x

= 1− e−ai − aie−ai
eai−x − 1

ai − x

(17)

where
∂gi(x)

∂x
= −aie−ai

eai−x(1− (ai − x))− 1

(ai − x)2
≥ 0

∂2gi(x)

∂x2
= −aie−ai(− eai−x

ai − x
+

2eai−x

(ai − x2)
+

2(1− eai−x)

(ai − x)3
) ≤ 0

(18)
The problem P2 equals to:

hi(λe,i) = λe,igi((ui − λe,i)Ti)− Ci(λi − λe,i) (19)

Because the following inequation holds, problem P2 is
concave.

∂2hi(λe,i)

∂λ2
e,i

= −2Tig
′
i((ui − λe,i)Ti) + λe,iT

2
i g

′′
i ((ui − λe,i)Ti) ≤ 0

(20)

C. Proof of Lemma 3

Calculate the derivative of problem P3, and let it equals to
0.

λe,i − e−(µi−λe,i)Ti(1 + λe,iTi)− Ci = 0 (21)

By solving this problem, the answer to the equation is:

λopt
e,i = min{λi,max[0,

W((1− Ci)eµiTi+1)− 1

Ti
]} (22)

D. Proof of Lemma 4

The same definitions of hi(µi, λe,i) and gi(x) as in the Proof
of Lemma 2 are adopted, but the variables of hi(µi, λe,i) are
both µi and λe,i.

∂2hi

∂µ2
i

= λe,iT
2
i g

′′
i ((ui − λe,i)Ti) ≤ 0 (23)

∂

∂λe,i
(
∂hi

∂µi
) = Tig

′
i((ui − λe,i)Ti)− λe,iT

2
i g

′′
i ((ui − λe,i)Ti)

(24)
∂

∂µi
(
∂hi

∂λe,i
) = Tig

′
i((ui − λe,i)Ti)− λe,iT

2
i g

′′
i ((ui − λe,i)Ti)

(25)
Calculate the Hessian and the following inequation holds.
Thus, problem P4 is concave.

∂2hi

∂λ2
e,i

∂2hi

∂µ2
i

− ∂2hi

∂λe,i∂µi

∂2hi

∂µi∂λe,i

= −(Tig
′
i((ui − λe,i)Ti))

2 ≤ 0

(26)
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