
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/303968909

Simultaneous	Information	and	Energy	Flow	for
IoT	Relay	Systems	with	Crowd	Harvesting

Article		in		IEEE	Communications	Magazine	·	November	2016

DOI:	10.1109/MCOM.2016.1500649CM

CITATIONS

0

READS

46

6	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

High	Speed	Rail	Communications	View	project

MolSig:	Molecular	Signaling	in	Complex	Environments	View	project

Weisi	Guo

The	University	of	Warwick

99	PUBLICATIONS			484	CITATIONS			

SEE	PROFILE

Siyi	Wang

Xi'an	Jiaotong-Liverpool	University

49	PUBLICATIONS			203	CITATIONS			

SEE	PROFILE

Xiaoli	Chu

The	University	of	Sheffield

107	PUBLICATIONS			1,191	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Weisi	Guo	on	15	June	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/303968909_Simultaneous_Information_and_Energy_Flow_for_IoT_Relay_Systems_with_Crowd_Harvesting?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303968909_Simultaneous_Information_and_Energy_Flow_for_IoT_Relay_Systems_with_Crowd_Harvesting?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/High-Speed-Rail-Communications?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/MolSig-Molecular-Signaling-in-Complex-Environments?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weisi_Guo?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weisi_Guo?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Warwick?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weisi_Guo?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Siyi_Wang5?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Siyi_Wang5?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong-Liverpool_University?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Siyi_Wang5?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoli_Chu?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoli_Chu?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Sheffield?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoli_Chu?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weisi_Guo?enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1

Simultaneous Information and Energy Flow for
IoT Relay Systems with Crowd Harvesting

Weisi Guo, Member, IEEE, *Sheng Zhou, Member, IEEE, Yunfei Chen, Senior Member, IEEE,
Siyi Wang, Member, IEEE, Xiaoli Chu, Senior Member, IEEE, Zhisheng Niu, Fellow, IEEE

Abstract—It is expected that the number of wireless devices
will grow rapidly over the next few years due to the growing
proliferation of Internet-of-Things (IoT). In order to improve the
energy efficiency of information transfer between small devices,
we review state-of-the-art research in simultaneous wireless
energy and information transfer, especially for relay based IoT
systems. In particular, we analyze simultaneous information-
and-energy transfer from the source node, and the design of
time-switching and power-splitting operation modes, as well as
the associated optimization algorithms. We also investigate the
potential of crowd energy harvesting from transmission nodes
that belong to multiple radio networks. The combination of
source and crowd energy harvesting can greatly reduce the use
of battery power and increase the availability and reliability for
relaying. We provide insight into the fundamental limits of crowd
energy harvesting reliability based on a case study using real city
data. Furthermore, we examine the optimization of transmissions
in crowd harvesting, especially with the use of node collaboration
while guaranteeing Quality-of-Service (QoS).

I. INTRODUCTION

Today, wireless services are dominated by packet data trans-
fer over the cellular and Wi-Fi networks. Cellular networks
account for the majority of the world’s wireless power con-
sumption, with 6 million macro-cells world wide consuming a
peak rate of 12 billion Watts. Whilst video demand drives most
of the data consumption, machine-2-machine (M2M) data is
the fastest growing driver. The rapid growth in the Internet-of-
Things (IoT) sector is set to increase the energy consumption
of small devices dramatically. Whilst many such small devices
are sensor motes with a power consumption that is in the
order of a Watt or less, the sheer number of such devices
(25 billion) is set to consume more power than the cellular
networks worldwide. Therefore, it is important to address the
emerging challenge of energy efficiency for connected small
devices. In order for small devices to communicate without a
tether, wireless relaying has been widely employed in current
and emerging wireless systems. For example, M2M-R relaying
has been proposed as a suitable heterogeneous architecture
for either the ETSI M2M, 3GPP MTC, or 3GPP 802.16p IoT
architectures [1].

Conventionally, relaying operations cost the relaying nodes
extra energy and therefore, may prevent battery-operated nodes

1Weisi Guo and Yunfei Chen are with the School of Engineering, University
of Warwick, UK. 2Sheng Zhou (*corresponding author) and Zhisheng Niu
are with the Department of Electronic Engineering, Tsinghua University,
China. 3Siyi Wang is with the Department of Electrical and Electronic
Engineering, Xi’an Jiaotong - Liverpool University, China. 4Xiaoli Chu is
with the Department of Electronic and Electrical Engineering, University of
Sheffield, UK.

from taking part in relaying. Thus, RF powered relaying is
a promising solution, whereby the relay nodes can harvest
energy from either the source node directly [2] or exter-
nal sources [3] (i.e., crowd harvesting from external radio
transmissions) for sustainable operation, as shown in Fig 1.
In fact, the feasibility of crowd harvesting is supported by
the dramatic increase in the density of RF transmitters in
cities. For example, the global cellular infrastructure consists
of more than 6 million base stations (BSs) and serves more
than 7 billion user equipments (UEs), and the number of Wi-
Fi access-points (APs) has reached 350 per km2, with many
metropolitan areas reaching over 700 per km21.

This paper addresses several challenges faced by energy
harvesting relay systems attempting to optimise throughput.
We break down the problem into two domains: i) the source
of the RF energy, and ii) optimising the transfer of information
subject to different energy harvesting scenarios. In particular,
we answer two important research questions: how to optimally
schedule information and energy transmission from a com-
mon transmitter node, and how much energy can be crowd-
harvested from ambient RF signals for relaying?

The organization of the paper is as follows. In Section II,
we review state-of-the-art research on RF powered relaying
systems. In Section III, we review the potential of harvesting
a crowd of transmission nodes that belong to multiple hetero-
geneous networks. In Section IV, we review the optimization
of transmissions with crowd harvesting, especially with node
collaboration while guaranteeing a certain QoS. Finally, in
Section V, we discuss open challenges research opportunities
in this area.

II. RF POWERED RELAYING

A. SWIPT: Harvesting from the Source Node and Relaying

If the relay node harvests energy from the source node’s
RF transmissions, then the relaying becomes a simultaneous
wireless information and power transfer (SWIPT) system
[2], as the relay node also receives information from the
source node. In this case, there are two main algorithms to
implement wireless powered relaying (WPR): time-switching
(TS) and power-splitting (PS). In TS, the source node transmits
energy to the relay node for αT seconds and the remaining
(1 − α)T seconds are used for information delivery, where
0 ≤ α ≤ 1 and T is the total duration of transmission. In PS,
a portion ρ of the received power from the source is used for

1http://www.smallcellforum.org/press-releases/small-cells-outnumber-
traditional-mobile-base-stations
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(a) SWIPT wireless powered relaying with energy from the source node

(b) non-SWIPT wireless powered relaying with energy from external sources

Fig. 1. Diagram of wireless powered relaying harvesting the source node or
harvesting external sources.

energy harvesting while the rest 1− ρ is used for information
decoding, where 0 ≤ ρ ≤ 1.

Both TS and PS relaying require a separate energy harvester
in addition to the data transceiver at the relay. On the one
hand, PS is slightly more complicated in hardware, as it uses
a power splitter which is not a trivial hardware component.
On the other hand, TS requires a dedicated harvesting time,
which adds complexity to synchronization and also reduces
the effective throughput of the system. Consequently, under
similar conditions, TS often has a smaller throughput than
PS. Another issue with PS is that it uses the same signal for
energy harvesting and information delivery in the broadcast
phase. This could be a problem for amplify-and-forward (AF)
relaying, as it uses the harvested energy to forward the rest of
the signal directly without any further processing. If the value
of ρ is small, a small amount of harvested energy would be
used to forward a strong signal; and if the value of ρ is large,
a large amount of harvested energy would be used to forward
a weak signal, both leading to a weak forwarded signal. Thus,
PS often has a smaller transmission range than TS in AF
relaying.

Researches in TS or PS WPR systems have mainly focused
on the analysis of the relaying performance and its optimiza-
tion with respect to α and ρ. Fig. 2(a) and Fig. 2(b) show the
scheduling of SWIPT relaying. The SWIPT relaying system in
[4] is different in that the relay node can harvest energy from
large-scale network interference or from self-interference in
full duplex nodes. Multiple antennas can be employed at either
the source node or the relay node to perform beamforming or
antenna selection for diversity gain. These are not discussed
in detail here.

B. Non-SWIPT: Harvesting from External Sources

Another type of RF powered relaying systems harvest
energy from external sources (e.g., crowd RF transmissions).

Source-to-Relay 

Energy

Source-to-Relay 

Information

Relay-to-Destination 

Information

T 2/)1( T 2/)1( T

(a) TS for SWIPT wireless powered relaying

Source-to-Relay Energy
Relay-to-Destination Information

2/T 2/T

(b) PS for SWIPT wireless powered relaying

Source-to-Relay Information
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Fig. 2. TS and PS for SWIPT wireless powered relaying.

As the energy and information come from different sources,
they do not assume a standard SWIPT structure. However,
since the transmission times of the nodes in the same network
are normally scheduled by a network-level central controller,
the relay can use the transmission times of all other nodes as
dedicated harvesting time, and energy is still controlled and
correlated with information. Traffic prediction and knowledge
of the nodes’ transmission schedule will help harvesting node
to build up a statistical understanding of the energy arrival
intensity and frequency.

To achieve efficient scheduling, one needs to model the
energy arrival or the energy profile as a function of time. This
model could be a random process, for example, a Markov
process that considers energy state transition [3]. It could be a
probabilistic model, for example, a Bernoulli energy injection
model with a probability of p that an energy of E is harvested
and a probability of 1 − p that no energy is harvested, or
a simple model with a probability of 1/3 that no energy is
harvested, a probability of 1/3 that an energy of E is harvested
and a probability of 1/3 that an energy of 2E is harvested [3].
It could also be a deterministic model where the amount and
the arrival time of the energy are known in advance before
scheduling [5].

Using these energy models, scheduling can be formulated
as an optimization problem that searches for the best trans-
mission time and the best transmission power. Depending on
whether the source node and/or the relay node conduct energy
harvesting at the k-th time slot (k = 1, 2, · · · ,K), the available
transmission energy Es(k) and Er(k) at the source node and
the relay node respectively will be variable. The optimization
is bounded by the energy causality, where the transmission
power Ps(k) and Pr(k) at the source and relay nodes re-
spectively must be smaller than the available energy from
energy harvesting. Moreover, there is an information causality
constraint for relaying systems, where the information must be
transmitted from the source node before it can be forwarded
by the relay node. The available energies at the source
and the relay are updated after each transmission. Existing

https://www.researchgate.net/publication/258083767_Simultaneous_Information_and_Energy_Transfer_in_Large-Scale_Networks_withwithout_Relaying?el=1_x_8&enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA==
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optimization techniques, such as convex optimization, non-
convex mixed-integer non-linear program, directional water-
filling, and dynamic programming, can be used to find the
optimum transmission times and power levels for the source
and relay nodes to maximize the sum throughput.

The optimization can be performed for online algorithms
that only have causal knowledge of the channel state infor-
mation (CSI) and energy state information (ESI) as well as
for off-line algorithms that assume knowledge of the CSI and
energy for all transmissions. For relaying systems, off-line
algorithms are very complicated, as they require knowledge
of transmissions in at each of the hops. It can be performed
by energy-constrained relay nodes that have limited energy as
well as energy-unconstrained relay nodes that have unlimited
energy. The size of energy storage can be limited or infinite,
which may impose an averaging-out effect on the available
energy that has been harvested. Even though not practical, the
off-line algorithms can provide a performance upper-bound
for the energy harvesting relay system, or can be applied
when the energy arrival can be predicted to some extent.
For online algorithms, the optimal scheduling policy can be
obtained via policy iteration with the Markov decision pro-
cess (MDP) formulation of the problem, especially for nodes
with finite energy storage. While the general policy iteration
suffers from the curse of dimensionality, i.e., high complexity,
heuristic algorithms like threshold-based transmission policies
are more practical, and in many cases, their performance can
be qualitatively analyzed. The optimization can cover various
QoS requirements of the traffic being delivered. For example,
it can be performed for delay-constrained case when the relay
node must forward the information upon reception, or for non-
delay-constrained case when the relay node does not need to
forward the information immediately after reception. In the
non-delay-constrained case, the binary indicator ds(k) = 0
(dr(k) = 0) means no information transmission in the k-
th frame and ds(k) = 1 (dr(k) = 1) means information
transmission in the k-th frame at the source (relay) node.
Alternatively, one can minimize the total relay transmission
time instead of maximizing its throughput.

Furthermore, the SWIPT and non-SWIPT modes can be
combined together. For example, a SWIPT mode could be
activated when insufficient energy is harvested from the non-
SWIPT mode. However, this combination brings challenges
too. First, since the relaying system and the ambient systems
may not operate on the same frequencies, multiple energy
harvesters may be required with increased hardware complex-
ity. Second, since the activity of one mode depends on the
other mode, the optimization of α and ρ in SWIPT and the
optimization of transmission power and time in non-SWIPT
will be technically difficult.

III. CROWD HARVESTING FROM EXTERNAL RADIO
TRANSMISSIONS

There has been a rapid growth in the density of fixed
and mobile wireless devices globally. Whilst the increase in
transmitter density will undoubtedly increase the amount of
RF energy available in urban environments, it is difficult to
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Fig. 3. Case study of central London’s 3G cellular and Wi-Fi networks:
(a) density map of residential and business Wi-Fi APs, and (b) distance
distributions from a random point to the nearest (n = 1) macro-BS and Wi-
Fi AP transmitter. Data obtained from the United Kingdom (U.K.) Census
(2011-15) and the The Office of Communications (Ofcom).

quantify the amount of energy reliably available for any given
energy harvesting device over some arbitrary time period.
The lack of certainty is due to three complexities, namely:
i) random nature of RF transmitter locations, ii) randomness
in the RF propagation channel, and iii) variations in spectrum
utilization due to traffic patterns.

A. Statistical Modeling: Distance Distributions

Considering energy harvesting from a large number of fixed
RF transmitters, it is possible to calculate the deterministic
pathloss for each channel (i.e., ray-tracing) and predict the
energy harvesting performance. However, several challenges
exist, two of which are: i) computational complexity grows
linearly with the number of energy harvesting devices; and ii)
imperfect knowledge of transmitters’ locations is a problem
when private small-cells and mobile UEs are considered as
energy harvesting sources. Hence, deterministically predicting
the performance is challenging and statistical approximations
maybe useful as bounds. Stochastic geometry studies random
spatial patterns. The underlying principle is that the locations
of network transmitters are random in nature, but their spatial
density and relative distances follow stable distributions. This
can be used to create tractable statistical frameworks for
analyzing the energy harvesting performance [6], [7].
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In order to estimate the energy received from a large number
of RF transmitters, one needs to know the probability distri-
bution of the distance between the n-th nearest RF transmitter
and the energy harvesting device. To demonstrate this, let us
consider for a moment that all the transmitters follow a certain
spatial distribution with node density Λ. For example, there
is a strong body of evidence that macro-BSs are distributed
following a Poisson point process (PPP), i.e., each macro-
BS is deployed independently to others. In the literature, the
probability density function (pdf) of the distance r between the
energy harvesting device at an arbitrary location and the n-th
nearest macro-BS is given by [6] fBS,Rn

(r;n,Λ). Fig. 3(b)-top
shows the n = 1 case for PPP distributed macro-BSs, which
follows a Rayleigh distribution.

As for small-cells (e.g., Wi-Fi APs and home femto-BSs),
there is a lack of knowledge about the distance distribution
due to the lack of large-scale empirical data. Two types of
small-cells exist: (1) operator deployed, and (2) privately
deployed. Existing research has largely focused on the former,
whereby it has been proposed that the distribution of small-
cells can follow Poisson cluster processes (PCPs). Using UK
Census data as a proxy, we infer small-cell locations from
household and business population and location data (UK
Wi-Fi penetration is 89.8%). The evidence gathered from a
statistically significant amount of data indicates that the small-
cell distance distribution is a non-uniform clustered spatial
process, whereby the nearest distance distribution closely
matches a Gamma distribution (see Fig. 3b). It remains an
open area of research to explore the precise spatial process
behind small-cells and the impact it has on crowd energy
harvesting.

B. Energy Harvesting Scaling Laws and Reliability

In this subsection, we consider the aggregated RF power
density (W/Hz) over a bandwidth of B (Hz) and from an area
with an average transmitter density of Λ.

1) Upper-Bound (Full Spectrum Utilization) with Dual-
Slope Pathloss: In the upper-bound analysis, we assume that:
i) all transmitters are transmitting across the whole spectrum
available, and ii) are emitting with the maximum allowable
power spectrum density on all frequency bands. Leveraging the
spatial distributions of RF transmitters found in the previous
subsection, research in [6] found that the received power
density Prx is linearly proportional to the bandwidth B and
the transmit power density Ptx, and has a complex monotonic
relationship with the distance-dependent pathloss exponent α
and the node density Λ. Given that the energy from each
transmitter will vary significantly depending on whether the
propagation is largely Line-of-Sight (LoS, α = 2) or Non-
LOS (NLoS, α > 2), one can consider a dual-slope approach
(as shown in Fig. 4), where two sets of pathloss exponents
are considered [8]: typically α = 2 for LoS free-space
propagation, and α > 4 for NLoS urban propagation. As a
result, the total power (averaged over distance) harvested from
K RF transmitters (each following its own spatial distribution)
follows the following scaling rules [6]:

• Linear with transmit power: Prx ∝ Ptx;

• Polynomial with transmitter density: Prx ∝ (Λ)
a
2 ;

LoS Free-Space (α=2)

NLoS Knife-Edge (α=4.3)

Femto-BSs
(1W, 20MHz)Macro-BSs

(40W, 20MHz)

TV Mast 
(1MW, 100MHz)

Wi-Fi Aps
(100mW, 60MHz)

Fig. 4. Upper-bound power harvested from different RATs as a function of
transmitter density Λ and pathloss scenarios.

As a case study, we consider the central London area (60
sq. km as shown in Fig. 3(a)) with network parameters for
multiple radio-access technologies (RATs): i) cellular macro-
BS downlink (20 MHz bandwidth, 40W, 0.3–5/km2, real
locations); ii) cellular femto-BS downlink (20 MHz, 1W,
15–200/km2, PCP distributed); iii) Wi-Fi AP downlink (60
MHz, 100mW, 50–1000/km2, proxy locations); and iv) TV
broadcast (100 MHz, 1000kW, 0.01–0.2/km2, real locations).
The pathloss model considered is the WINNER model2 with
the appropriate shadow fading for different urban propagation
environments.

Fig. 4 shows the upper-bound power harvested from differ-
ent RATs as a function of transmitter density Λ and different
path-loss exponent values a. In particular, two exponent values
are considered: (top) a = 2 (free-space), and (bottom) a = 4.3
(urban NLOS propagation in WINNER model). Table I shows
the peak harvested power (W) and power density (W/Hz) for
different RATs (full spectrum usage). The results are obtained
from extensive Monte-Carlo simulations in a manner similar
to [6]. It can be seen that the greatest opportunity for power
harvesting lies in the TV broadcast channels. Given that the
network traffic of small-cells and TV is typically higher than
that of macro-BSs, it is advisable to focus crowd energy
harvesting in these bands for relaying.In Fig. 4(top), the free-
space (LoS) results match those found in existing field test
observations.For example, it was found that 100 µW can be
achieved at a 20km distance from a 150kW TV station [9].
Looking ahead, we do not expect the node density for Macro-
BSs and Wi-Fi hubs to change over the coming years, but
the estimates are that the Femto-BS density will increase by
at least 20 fold. Therefore, we expect a polynomial increase
(exponent a/2, where the value of a is typically 2-4) in the
power available for harvesting. This potentially will lead to

2The WINNER (Wireless World Initiative New Radio) is a statistical radio
propagation model (2-6 GHz) for link and system level simulations of a variety
of short range and wide area wireless communication systems.
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TABLE I
CASE STUDY RESULTS WITH DIFFERENT RATS.

RAT Peak Power Density
Macro-BS Downlink 11 fW/Hz
Femto-BS Downlink 24 fW/Hz
Wi-Fi Downlink 9 fW/Hz
TV Broadcast 7550 fW/Hz
RAT Peak Power (LoS)
Macro-BS Downlink 0.21 µW
Femto-BS Downlink 0.47 µW
Wi-Fi Downlink 0.18 µW
TV Broadcast 151 µW

femto-BSs to act as an alternative or complementary source
of crowd harvesting RF energy.

As for NLoS energy harvesting, as shown in Fig. 4(bottom),
the values are several orders of magnitude lower, due to the
more significant distance dependent path loss, affecting the
long range TV signals more than short-range Wi-Fi signals.
Therefore, it is better to use Wi-Fi bands for NLoS energy
harvesting, as opposed to TV. A key consideration from these
results is that a relay performing RF harvesting would also
require a band for information delivery, which should be
the bands that present the least energy harvesting potential.
Whilst the nearest node accounts for 89% of the energy from
crowd harvesting, in realistic networks, the nodes may not
be transmitting at full-buffer continuously, and analysis that
incorporates traffic patterns is necessary to understand the
reliability advantage of crowd energy harvesting over nearest-
node harvesting.

2) Realistic Traffic Load (Variable Spectrum Utilization):
In order to estimate the realistic time-dependent RF energy, it
is important to consider the spectrum utilization over time for
each RF transmitter, which depends on the traffic load of each
transmitter. Leveraging a well-known statistical model of 3G
HSPA networks [10], one can infer the spectrum utilization
pattern at each BS as a ratio of the traffic and the peak
capacity of the BS. Given that the N BSs are independent and
identically distributed in space and in spectrum utilization,the
pdf of the power density (W/Hz) harvested from all N RF
transmitters is the linear combinations of random variables.
This corresponds to the convolution of probability distributions
if the traffic random variables are independent. Therefore, the
N -fold continuous convolution of the traffic load pdf, i.e.,
fL1 ∗ fL2 ∗ fL3 ∗ ... ∗ fLN

. These foundation statistical results
and future research will provide useful guidelines to designing
crowd harvesting powered relaying systems under variable
spectrum utilization.

IV. OPTIMIZATION FOR CROWD HARVESTING

We have so far reviewed SWIPT and non-SWIPT relaying,
and in particular how non-SWIPT relaying can benefit from
crowd RF energy harvesting across different RATs, which
is attractive, especially in the TV bands (LoS) and Wi-Fi
bands (NLoS). However, what remains unclear is how a relay
system, where the nodes are sufficiently apart (and hence

have different energy harvesting potentials), can collaborate
to achieve optimal relaying performance. In this section we
discuss node collaboration and transmission scheduling with
QoS guarantees for relaying with crowd harvesting.

A. Node Collaboration
It has been revealed that the correlation distance of the

traffic density is less than 80 meters in urban areas [11],
indicating that the RF energy harvesting process may follow
similar spatial correlation. Two nodes that are more than 100
meters apart tend to have almost independent energy harvest-
ing processes, and thus node collaboration can be performed to
exploit the independent relationship between energy profiles,
e.g., to achieve energy harvesting diversity gains.

First we illustrate the benefit of node collaboration via
combining the SWIPT and ambient energy harvesting, in order
to compensate for the possible energy shortage at either source
or relay as shown in Fig. 1. Assuming that the source can
harvest more ambient RF energy than the relay node, one can
introduce new TS parameters α1 and α2 (0 ≤ α1, 0 ≤ α2,
α1+α2 ≤ 1), whereas the energy harvesting phase can be split
further into two parts, with α1T seconds and α2T seconds, for:
i) source-to-relay energy delivery, and ii) ambient RF energy
harvesting at relay, respectively. Note that the source can make
use of the time when the relay forwards the message, to harvest
additional ambient RF energy. For PS, a similar protocol can
be adopted, with power-splitting factors ρ1 and ρ2 (0 ≤ ρ1,
0 ≤ ρ2, ρ1 + ρ2 ≤ 1) for source energy delivery and ambient
RF energy harvesting, respectively. While this may require
another energy harvesting component, a mechanism of hybrid
TS and PS can be a promising solution without additional
hardware requirements.

Furthermore, for the scenario where the nodes have no
SWIPT structure or have some common information to the
same destination, for example, the multiple relays in the
second hop of a relaying transmission, or multiple sensors
that sense the same target and need to deliver the sensing
results to the sink. In this case, collaborative transmission
can be used to address the uneven energy arrival rates, for
instance the energy arrival process illustrated in Fig. 5, for
node A and B. As a simple example, a transmission frame
can be divided into two subframes. In the first subframe,
only one of the nodes can be scheduled to transmit in the
conventional way. In the second subframe, multiple nodes can
perform simultaneous joint transmission (JT) to the destination
with distributed beamforming. To this end, the frame division
portion ξ (0 ≤ ξ ≤ 1) and the node scheduling should be
jointly optimised, taking into account the ESI of all nodes.

For both cases, to get the optimal system parameters αi, ρi
and ξ, practical online algorithms should be designed based
on the prediction of the mobile traffic that generates the crowd
EH source. One can model the mobile traffic variation with
Markovian model, of which the transition probabilities can be
trained based on real data as presented in Section III, and then
MDP policy iteration will provide the optimal transmission
scheduling and system parameters. To reduce the complexity
of MDP, one can do conventional optimization on a per-
frame basis, with the energy arrivals and channel conditions

https://www.researchgate.net/publication/260603354_Spatial_Modeling_of_the_Traffic_Density_in_Cellular_Networks?el=1_x_8&enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA==
https://www.researchgate.net/publication/254037473_Users_in_cells_A_data_traffic_analysis?el=1_x_8&enrichId=rgreq-614153235ed8a6e7a356ac0e05a8f516-XXX&enrichSource=Y292ZXJQYWdlOzMwMzk2ODkwOTtBUzozNzMwNzE2NDgxODIyNzJAMTQ2NTk1ODYyMDU5NA==


6

time

time

time

t1

E
n

er
gy

 h
a

rv
e

st
in

g 
ra

te

Node A Node B

t2 t3
D

D

t2-t1<D
t3-t2<D

t1 t2 t3 t1 t2 t3

A Transmits

B Transmits
A and B Joint 
Transmission

QoS Constraint

Fig. 5. Transmission scheduling and node collaboration under independent
energy arrival processes and inter-delivery time requirement.

of several future frames as known, given the traffic prediction
precision is high.

B. Delay QoS Guarantee

As a type of delay-sensitive traffic, the transmission of the
sensing data is subject to a temporal regularity constraint, for
example the inter-delivery time requirement [12], as a large
gap between updates can cause system instability. To guarantee
such delay QoS requirement, the transmission scheduling
should utilize the diversity from the different energy harvesting
processes of nodes. For instance in Fig.5, there are three
consecutive delivery instants, t1, t2 and t3, and it is required
that the inter-delivery time should be less than D. At time
t1, node A has a high energy harvesting rate and can afford
to deliver the sensing data to the sink, and likewise at time
t2, node B has enough energy to deliver the data. However
at time t3, both nodes have low energy arrival rates and the
inter-delivery time constraint D is about to break, thus they
use collaborative JT to ensure reliable transmission to the sink.

Some delay-insensitive applications require that important
events are sensed or sampled with finer time granularity, but
can be delivered less timely. In this case, the sensor node needs
to act proactively according to the energy stored in its battery
and the prediction of future energy arrivals. If the battery is
about to overflow, the node can send the sensing results in a
batch to the destination/sink, while maintaining enough energy
for possible sensing efforts when important events happen. By
optimizing the energy storage in the battery and the scheduling
of transmission/sensing activities, the node can equivalently
match the energy arrivals and the occurrence of sensing events
over time.

V. OPEN CHALLENGES

WPR is a relatively new technique. It has strong potential
for the emerging M2M communications in IoT systems, but
a number of open challenges exist. Accurate energy modeling
is important. Most existing work merely considers the energy
used for transmission. However, the energy consumption for

receiving is comparable with that of transmission and cannot
be ignored [13]. Therefore, scheduling decisions should take
into account the energy consumption of receiving as well,
and a relay node should switch among receiving, forward-
ing, and keeping silent modes to save energy, based on its
ESI, CSI of the multiple hops, and the delay constraints. In
terms of optimization, an area of interest that has not been
mentioned in this paper is relay selection, which provides a
trade-off between complexity and performance. However, the
relay selection criterion for information transmission may be
different from that for energy transfer. For example, previous
research has shown that the relay node offering the largest
end-to-end SNR may not be the one with the largest received
power [14]. In SWIPT WPR, it is not clear which selection
criterion should be used to achieve the best performance.
In practice, the distances between nodes will significantly
affect the system performance, as existing energy harvesters
on work efficiently over short distances. Therefore, a practical
challenge is to decide whether it is better to use multi-hop
with shorter distances.
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