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Abstract—With the growing need for Internet of things (IoT)
applications, wireless communications are facing the challenge
of providing massive connectivity. However, as the number of
users increases, the capacity of massive MIMO systems will be
severely affected due to the huge channel estimation overhead.
Therefore it is necessary to introduce non-orthogonal pilots to
massive MIMO systems in order to ease the burden on the
resources for channel estimation. In this paper, we propose a
KKT-based iterative non-orthogonal pilot design algorithm which
maximizes the mutual information between the received signal
and the channel for MMSE channel estimation. For the typical
antenna deployment of uniform linear array (ULA), we also
provide scalable estimation schemes with low complexity based
on channel angular representation as alternatives. The simulation
results show that our schemes significantly save the estimation
overhead at the cost of slight decrease in the MSE performance
of the channel estimation, and the saving is even more prominent
when the system accommodates more users.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has estab-

lished an important role in the development of next generation

cellular networks for its enormous enhancements in spectral

efficiency and promising capacity to support the explosive

growth of user traffic [1]. Besides traditional wireless applica-

tions such as voice calling, online videos and emails, machine

to machine (M2M) communications are getting widely spread

with the vigorous development of the Internet of Things (IoT)

[2]. The substantial increase in the communication devices

requires the networks to have the ability to handle massive

connectivity.

On the other hand, the power consumption of the cellular

system has increased to a tremendous amount and will con-

tinue growing with the densification of networks. To allow for

efficient BS sleeping and load balancing mechanisms from

the view point of the whole system, a novel framework of

hyper-cellular system has been proposed, which separates the

control signaling and data service by deploying two types of

BSs, namely the control BS (CBS) and the traffic BSs (TBS)

[3]. The CBS’s function to provide large area coverage for

mobile users also requires the system possessed with massive

connectivity.

For uncorrelated MIMO channels, ref. [4] has shown that

the optimal training pilots for different users are orthogonal

vectors. The system should allocate timeslots with length no

less than the number of users in training process to acquire

channel state information (CSI). As a result, the overhead of

channel estimation using orthogonal pilots increases with the

growing number of users. In systems with massive connec-

tivity, the estimation overhead may be too expensive for the

limited channel coherence time to afford. Luckily, channel

correlations exist in many practical situations due to not so

rich scattering conditions, which provides the opportunity to

design non-orthogonal pilots and reduce the overhead.

Recently a number of works have investigated the CSI

acquisition issue in the case of correlated MIMO channels.

Ref. [5] exploits the sparsity of massive MIMO channels

in poor scattering environment and proposes a compressive

sensing approach, but the performance relies highly on the

sparsity of channels. Ref. [6] proposes the joint spatial division

and multiplexing (JSDM) scheme, which divides users with

similar channel correlation matrices into groups and then con-

ducts a two-stage precoding, but the inter-group interference

is the bottleneck of the scheme. The authors in [7] apply

the MMSE technique to reduce inter-cell pilot contamination,

and illustrate the fact that users with non-overlapping angular

spreads will hardly interfere with each other. The work is

extended to intra-cell case by [8], in which a greedy pilot

reuse scheme is designed.

Different from [7], [8], we consider more general scenarios

where the MIMO channels are composed of multiple clusters

of multi-path components (MPCs). We focus on the design

of scalable pilot schemes for massive MIMO systems with

massive connectivity and exploit user diversity to further

reduce the training overhead. In the paper, we propose a

mutual-information-optimal iterative pilot design algorithm for

MMSE estimation. Furthermore, we provide efficient channel

estimation schemes based on angular representation for the

case of uniform linear array (ULA).

The rest of the paper is organized as follows. Section II

describes the signal and channel models adopted in this paper.

The optimization of non-orthogonal pilots for MMSE channel

estimation is discussed in Section III. Then we demonstrate

heuristic estimation schemes for ULA case in Section IV. The

simulation results are presented in Section V. Finally, we draw

our conclusions in Section VI.



II. SIGNAL AND CHANNEL MODELS

We consider a MU-MIMO system operating in TDD mode

with a BS and K single-antenna users. The BS is equipped

with an antenna array of M elements. We consider users

located on the one side of the antenna array to avoid mirroring

ambiguity. The channel reciprocity is exploited, so that we

only need to estimate uplink CSI.

In the training procedure with τ timeslots, User k sends a

pilot sequence sk = [sk1, sk2, · · · , skτ ]T to the BS. All users’

pilot sequences forms the pilot matrix

S = [s1 s2 · · · sK ] .

As a result, the received signal of the BS is

Y = HST +N , (1)

where Y = [y1 y2 · · ·yτ ] is the received signal vectors,

H = [h1 h2 · · ·hK ] consists of each user’s channel vectors

and N = [s1 s2 · · · sτ ] is the white additive Gaussian noise

(AWGN) with zero-mean and elementwise unit variance.

We extend the channel model in [8] and model User k’s

channel vector as the sum of Lk clusters of MPCs.

hk =

Lk∑
l=1

∫
A
αkl(θ)v(θ)dθ =

∫
A
αk(θ)v(θ)dθ, (2)

where v(θ) is the steering vector of BS array with incidence

angle θ, which is constrained in the angular region A, and

αk(θ) =
∑Lk

l=1 αkl(θ) is the total channel gain function of

User k.

We assume channel gain function αk(θ) is uncorrelated in

angular domain. The channel power distribution is modeled as

power azimuth spectrum (PAS) [9],

PASk(θ) = E{|αk(θ)|2}. (3)

Then the channel correlation matrix of User k is given by

Rk = E{hkh
H
k } =

∫
A
v(θ)vH(θ)PASk(θ)dθ. (4)

When the BS is equipped with ULA with critical antenna

spacing (i.e., half the wavelength), the steering vector is

denoted by,

v(θ) =
1√
M

[
1, e−jπ sin θ, · · · , e−jπ(M−1) sin θ

]T
. (5)

The angular representation of the received signal is obtained

by multiplexing the signal by the inverse descrete Fourier

transformation (inverse DFT) matrix (up to some phase shift)

[10],

Y a = UHY , (6)

where the DFT matrix is represented by

U = [v(arcsin(
0

M
− 1)),v(arcsin(

2

M
− 1), · · · ,

v(arcsin(
2(M − 1)

M
− 1)].

(7)

III. NON-ORTHOGONAL PILOT OPTIMIZATION FOR MMSE

ESTIMATION

The channel correlation matrix varies much slower com-

pared to the instantaneous CSI. So we assume the channel

correlation matrix is known and stays constant over the whole

training process.

By vectorizing the matrices in (1), we get the vectorization

form of the received signal,

vec(Y ) = (S ⊗ IM )vec(H). (8)

The optimal linear estimator to minimize mean square error

(MMSE) is

Gopt = R(SH⊗IM )((S⊗IM )R(SH⊗IM )+IτM )−1, (9)

where R is obtained by cascading all the channel spatial

correlation matrices in the diagonal.

R = diag{R1,R2, · · · ,RK}. (10)

The mean square error (MSE) matrix is

Ce = (R† + (SHS)⊗ IM )−1, (11)

and the mutual information between the channel vector and

the received signal conditioned on the training pilots is

I(H;Y |S) = log det(R)− log det(Ce)

= log det(I + (S ⊗ IM )R(SH ⊗ IM ))).
(12)

To design optimal training pilots, we consider two opti-

mization criteria as in [11], namely minimizing the trace of

MSE matrix tr{Ce}, and maximizing the conditional mutual

information I(H;Y |S). The two optimization problems are

formulated as follows, respectively:

OPMSE : min
S∈Cτ×K

tr{(R† + (SHS)⊗ IM )−1}
s.t. sHk sk ≤ β, k = 1, 2, · · · ,K

(13)

and

OPCMI : max
S∈Cτ×K

log det(I + (S ⊗ IM )R(SH ⊗ IM )))

s.t. sHk sk ≤ β, k = 1, 2, · · · ,K
(14)

where the constraint is per user’s power not larger than β.

The case that pilot length equals user number (τ = K) has

been investigated in [11]. It is proven that the optimal pilots

satisfying either criteria are orthogonal vectors. However, for

systems with massive connectivity and limited coherence time,

using non-orthogonal pilots with length τ < K is better

choice.

In fact, the two optimization criteria are closely related.

Let λi, i = 1, 2, · · · ,MK be the eigenvalues of the MSE

matrix Ce. Minimizing the trace of MSE matrix is equiva-

lent to minimizing
∑MK

i=1 λi, and maximizing the conditional

mutual information is equivalent to minimizing
∏MK

i=1 λi. For

simplicity, we focus on the latter criterion, which can be

regarded as an upper bounder of the former criterion, since∑MK
i=1 λi ≥MK MK

√∏MK
i=1 λi.



To solve the optimization problem, we derive a KKT-based

iterative algorithm inspired by [12]. The Lagrangian function

of the optimization problem is

L(S,μ) = log det(I + (S ⊗ IM )R(SH ⊗ IM )))+
K∑

k=1

μk(s
H
k sk − β).

(15)

It is obvious that the optimal pilots should use the maximum

transmit power to fight against noise. Meanwhile, the optimal

pilots should satisfy the KKT conditions

Sij =
1

μi

M∑
m=1

T(i−1)M+m,(j−1)M+m, (16)

where T = (I + (S ⊗ IM )R(SH ⊗ IM ))−1(S ⊗ IM )R.

Therefore, we propose the KKT-based iterative pilot design

(KIPD) scheme as in Algorithm 1. In the scheme, every

iteration step generates a new pilot matrix according to the

KKT conditions and the power constraint. The iteration stops

until the pilot matrix converges.

Algorithm 1 KKT-based Iterative Pilot Design (KIPD)

Scheme
Input: The channel correlation matrix R, the power

constraint β and the precision parameter ε0
Output: The pilot matrix S

1: Initialize the pilot matrix as S(0) and l = 0.

2: repeat
3: l = l + 1.

4: Generate the new pilot matrix according to (16),

T (l)=(I+(S(l−1)⊗IM )R((S(l−1))H⊗IM ))−1(S(l−1)⊗
IM )R, where S

(l)
ij =

∑M
m=1 T

(l)
(i−1)M+m,(j−1)M+m.

5: Normalize the pilots according to the power constraint,

S
(l)
ij ← β

∑
i(S

(l)
ij )2

S
(l)
ij .

6: until ||S(l) − S(l−1)||2 < ε0

IV. CHANNEL ESTIMATION SCHEMES BASED ON

ANGULAR REPRESENTATION FOR ULA

The KIPD scheme provides mutual-information-optimal pi-

lots for MMSE channel estimation, which also has good

MSE performance. Unfortunately, we can only guarantee the

local optimality of the scheme, and the complexity of the

scheme is rather high as a result of the iteration process.

Therefore, for the typical antenna deployment of ULA case,

we propose heuristic pilot design schemes based on the angular

representation of user channels .

A. Truncation of PAS

We start by truncating the PASs of users, which reflect the

channel power distribution in the angular domain and can be

estimated by a series of techniques of array signal processing

such as MUSIC and SAGE [13].

More specifically, we determine a threshold ξ and the

corresponding superlevel set of the PAS

Sk = {θ|PASk(θ) ≥ ξ}, (17)

such that the power loss due to ignoring the spectrum below

the threshold is limited to a given parameter η,∫
A PASk(θ)dθ −

∫
Sk

PASk(θ)dθ∫
A PASk(θ)dθ

= η. (18)

Thus we obtain a truncated angular spread Sk for User

k, which is naturally a union of bounded intervals (effective
intervals).

In the theorem below, we show that the non-zero elements

of the channel angular representation ha after the truncation

of PAS are also restricted in intervals,

Theorem 1. As M → ∞, if PAS(θ) = 0 for θ ∈
[arcsin( 2(m1−1)

M − 1), arcsin( 2(m2−1)
M − 1)], then ha

m = 0 for
index m ∈ {m1, · · · ,m2}, where 1 ≤ m1 < m2 ≤M .

Proof. We know that as M → ∞, the integral in (2) can be

approximated by

h =

M−1∑
m=0

(φm+1 − φm)α(φm)vm(φm), (19)

where

φm = arcsin(
2m

M
− 1),m = 0, 1, · · · ,M. (20)

As a result, the user’s channel angular representation is

ha = UHh = [(φ1 − φ0)α(φ0), · · · ,
(φM − φM−1)α(φM−1)]

T .
(21)

If PAS(θ) = 0 for θ ∈ [φm1−1, φm2−1], then α(φm) = 0
for index m ∈ {m1 − 1, · · · ,m2 − 1}. Therefore, the corre-

sponding indexes of ha are also 0 from (21).

B. Non-orthogonal Pilot Schemes

We discuss non-orthogonal pilot schemes in two different

cases, distinguished by the cluster number of channels.

1) Single-Interval Case: If the channel of each user consists

of a single cluster of MPCs, the truncated PAS also has a single

interval. We construct a user angular spread conflict graph G,

which is an interval graph, by using a vertex to represent each

user and adding an edge whenever two users have overlapping

effective intervals. An example of the conflict graph of 4 users

is presented in Fig. 1(a).

We apply the pilot reuse scheme [8] to the single-interval

case. The scheme adopts a set of orthogonal pilots and reuses

them by assigning the same pilot to users with non-overlapping

angular spreads. According to Theorem 1, the mixed receive

signals can be separated in the angular domain due to the high

spatial resolution in massive MIMO systems.

The pilot allocation scheme is equivalent to the coloring

problem of G. The minimum pilot length is the chromatic

number of G, i.e., the least color number to color G. Appar-

ently, G is an interval graph, whose chromatic number equals



Fig. 1. Examples of truncated PAS. The effective intervals of users are in different colors. (a) Angular spreads of 4 users in the single-interval case and the
corresponding conflict graph. (b) Angular spreads of 3 users in the multiple-interval case.

the size of its largest clique. Therefore, the minimum pilot

length equals the cardinality the largest conflict user set. For

example, the chromatic number and the size of largest clique

of the conflict graph of Fig. 1(a) are both 3, so we need at

least 3 timeslots to estimate the channels.

The pilot assigning problem can be solved by a greedy

coloring algorithm [14], which is provided in Algorithm 2. By

greedily coloring angular intervals in sorted order of their left

endpoints, the GCPR scheme can find the minimum number

of pilots in polynomial time.

Algorithm 2 Greedy Coloring Pilot Reuse (GCPR) Scheme

Input: The angular spreads of users Sk, k = 1, 2, · · · ,K
Output: The pilot assignment c

1: Initialization. Set the number of pilots τ = 0, the pilot

index set C = ∅, the pilot assignment c = [0, · · · , 0]K×1,

generate conflict graph G according to the angular spreads

of users.

2: Sorting. Arrange the users according to the ascending

order of the left endpoints of their angular spreads.

3: Pilot allocation. For i = 1, 2, · · · ,K, orderly assign users

with the first pilot which is not used by conflicting users.

If there exists no such pilot, add a new pilot to C and

assign it to the user.

2) Multiple-Interval Case: In this case, the truncated PAS

of multiple-cluster channel is composed of multiple intervals,

and the conflict graph G is a multiple-interval graph. The

chromatic number of G may exceed the size of its largest

clique, which means the minimum pilot length of the pilot

reuse scheme may be much larger than the cardinality of the

largest overlapping user set.

We consider a segment-by-segment channel estimation

(SCE) scheme for this case. The whole angular region A is

divided by the endpoints of all users’ effective intervals into I
segments, pi, i = 1, 2, · · · , I . Then the angular spread ASk of

each user can be regarded as a subset of all these segments,

ASk = ∪I
i=1uikpi, (22)

where uik is an indication function that takes value 1 if ASk

contains Segment i, and 0 otherwise.

For each Segment i, the users with angular spread contain-

ing the segment form a conflict set Ci,
Ci = {k|uik = 1}, i = 1, 2, · · · , I. (23)

In the training process, the angular representation ya
t of the

received signal in Timeslot t (t = 1, 2, · · · , τ) is divided into

ya
it by Segment pi (i = 1, 2, · · · , I). For the i-th segment, the

received signal is the superposition of the signals of users in

set Ci,
Y a
i =

∑
k∈Ci

ha
iks

T
k , i = 1, 2, · · · , I, (24)

where Y a
i = [ya

i1,y
a
i2, · · · ,ya

iτ ], and hik is the i-th segment

of User k’s channel in angular representation.

Fig. 1(b) depicts an example of the angular spreads of 3

users in the multiple-interval case. The whole angular region

is divided into 4 segments. In Segment 1, h12 = 0, therefore

User 1 and User 3 form the conflict set C1 = {1, 3}. The

conflict sets of Segment 2,3,4 are C2 = {1, 2}, C3 = {2}, C4 =
{2, 3}, respectively.

As long as the pilots of users in Ci are linearly independent

with each other, the i-th segment of the channels can be

estimated by a simple transformation of (24),

catk∈Ci
[ha

ik] = (catk∈Ci
[sTk ])

†Y a
i , (25)

where cat[·] denotes the concatenation of column vectors.

Finally, the channel is recovered by joining all the segments

together,

hk = U

⎡
⎢⎣

h1k

...

hIk

⎤
⎥⎦ . (26)

In the SCE scheme, we have the following theorem for the

minimum pilot length,

Theorem 2. The minimum pilot length for the proposed
channel estimation scheme equals the cardinality of the largest
user conflict set,

τmin = max
i
|Ci|. (27)

Proof. We let P = maxi |Ci|. Firstly, the pilot length τ should

be no less than P . Otherwise, for the largest user conflict set,



we can not find P linearly independent pilot vectors in τ -

dimension (τ < P ) space.

Then we show there exists a P×K pilot matrix S satisfying

the condition that any P columns of the matrix are linearly

independent.

We choose the pilot matrix S to be

Stk = e−j 2π
K (t−1)(k−1), t ∈ 1, 2, · · · , P , k ∈ 1, 2, · · · ,K.

(28)

Thus any P columns sc1 , sc2 , · · · , scP of the proposed

matrix S form a Vandermonde matrix

V =

⎡
⎢⎣

1 · · · 1
...

. . .
...

e−j 2π
K (P−1)(c1−1) · · · e−j 2π

K (P−1)(cP−1)

⎤
⎥⎦ (29)

with a determinant

detV =
∏

1≤l<m≤P

(e−j 2π
K (cm−1) − e−j 2π

K (cl−1)) �= 0. (30)

So the condition is satisfied. We can estimate the channel

in each segment by using the pilot matrix S.

The proof actually provides a pilot design scheme, i.e.,

choosing the first P rows of the K × K DFT matrix. Note

that the estimation scheme does not utilize the precise second-

order channel information of users (e.g. the channel correla-

tion matrices). It only uses 1-bit information by applying a

threshold ξ to the PASs of users, which makes the estimation

scheme more robust to the error of the second-order channel

information.

We also notice that the GCPR scheme and the SCE scheme

have the same expression for the minimum pilot length, since

they both estimate channels in the angular domain. In fact, we

can apply the SCE scheme to the single-interval case and will

get the same performance.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

schemes under different system parameters.

We use the modified Saleh-Valenzuelus model [15] to gen-

erate PAS in our simulation. There is an exponential power

decay between different clusters. The incidence angle within

a cluster, θkli, satisfies the Laplacian distribution with mean

θkl uniformly distributed over a 120◦-sector [−60◦, 60◦), and

standard deviation σkl. The PDF of the incidence angle is

fkl(θkli) =
1√
2σkl

exp(−
√
2|θkli − θkl|

σkl
). (31)

The whole PAS is the superposition of Laplacian distribu-

tions in each cluster. We assume the same standard deviation

σ = σkl for every user and their total PAS is normalized to

1. The pilot power constraint for each user is set to 10 dB. In

the KIPD scheme, the precision parameter ε0 is set to 10−3.

For the multiple-interval case, the cluster number of each user

takes value of 1,2,3 or 4 with equal probability. We obtained

the results by averaging over 1000 simulation runs.
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Firstly, we observe the performance of the GCPR scheme

in the single-interval case. Fig. 2 shows the MSE (normalized

by antenna number) under different settings of BS antenna

number M and PAS truncation loss η. With increasing antenna

numbers, the MSE drops as a result of the improved spatial

resolution ability of the array to eliminate interferences. On the

other hand, setting PAS truncation loss to a higher level will

reduce the pilot length at the cost of increasing the MSE. Fig.

3 shows the relationship between the pilot length (normalized

by user number) and the user number K, and the impact

of the standard deviation σ of angular spread. The angular

spreads become more dispersive with larger σ, which leads

to the widening of truncated intervals and the increase of the

pilot length. We also observe that there is a decease of the

normalized pilot length with increasing user number, which

means more proportion of training overhead can be saved

for massive connectivity scenarios where larger user diversity

exists.



Then we turn to the performance of KIPD and SCE schemes

in the multiple-interval case, which is depicted in Fig. 4.

The results of SCE scheme is obtained by taking different

values of η from the set {0.20, 0.14, 0.08, 0.02}. There is a

slight performance difference between the two schemes, and

the difference gradually vanishes with the decreasing of η.

In addition, we can see that the estimation error of adopting

non-orthogonal pilots (τ = (0.6 − 0.9)K) is close to the

error performance of orthogonal pilots (τ = K), especially

in the system with less dispersive angular spreads (smaller

σ). By applying KIPD schemes, we can save 30% of the

estimation overhead (τ = 0.7K) with the cost of increasing

only 3.3%, 2.5%, 2.3% of the MSE for σ = 10, 20, 30 degrees,

respectively.

VI. CONCLUSION

In this article, we have investigated non-orthogonal pilot

design problem to reduce training overhead for massive MIMO

systems with massive connectivity. The pilot matrix is opti-

mized by a KKT-based iterative pilot design (KIPD) algorithm

to maximize the mutual information between the received

signal and the channel. Furthermore, for the ULA case, we

propose a greedy coloring pilot reuse (GCPR) scheme and

a segment-by segment channel estimation (SCE) scheme for

the single-interval and multiple-interval case of truncated PAS,

respectively. The simulation results verify the performance

gain of the proposed schemes, and show that non-orthogonal

pilot schemes can reduce the pilot length by 30% at the cost

of increasing the estimation error by as small as 2.3%.
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