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Abstract—This paper considers a single-transmitter energy
harvesting system and looks into the problem of completion
time minimization from the worst-case point of view. In offline
study, an optimal algorithm [1] is given to yield the minimum
completion time of transmission. However, for online algorithms,
the randomness of future energy arrivals adds to the difficulty
of scheduling, thus the offline minimum completion time cannot
always be reached. This leads to the question “What is the
deterministic performance bound of online algorithms compared
to the offline optimum”. By a game-theoretic method, this paper
shows that with an infinite-sized battery, there exist several
algorithms that guarantee a completion time no more than the
twice of its offline counterpart for all possible energy arrivals,
and more importantly that the ratio of two cannot be further
reduced. This property is of great significance especially when
reliability is valued in the system.

I. INTRODUCTION

In this paper, we consider a communication system where
the transmitter is powered by an energy harvesting module
with a sufficiently large battery. According to the current
size of buffered data and the battery state, the transmitter
determines the transmit power at each time slot in order to
minimize the transmission completion time, defined as the
number of time slots between the arrival of data request at
the transmitter and the completion of transmission. Note that
the queueing delay in the buffer is not considered. The channel
is assumed to be time-invariant, so that the rate-power function
of the channel does not change with time.

It is nontrivial and challenging to investigate the power allo-
cation policy of an energy harvesting communication system,
due to the randomness of energy arrivals [2]. Specially, energy-
delay tradeoff in conventional wireless networks has been well
studied. But the completion time, which directly adds to the
delay in energy harvesting systems, requires more attention.

For the offline case, where all the information of future en-
ergy arrivals is known in advance, the optimal power allocation
schemes for different scenarios have been investigated. Opti-
mal algorithms for transmission completion time minimization
with an infinite-sized battery and a finite battery are given in
[1] and [3], respectively. A directional water-filling algorithm
[4] and a similar staircase water-filling algorithm [5] are
proposed for throughput maximization with fading channels.
The impact of circuit power consumption is considered in [6]
and [7].

As for the online settings, where only the historical informa-
tion is available to the transmitter, the design of optimal policy

by dynamic programming, which requires a known probability
distribution on the energy arrival [8], is discussed [4]. Several
sub-optimal algorithms for throughput maximization are also
proposed [4], but none of them offers performance guarantee.
Moreover, online throughput maximization in finite-horizon is
discussed [9]. For static channel with Bernoulli energy arrivals,
a power allocation algorithm for long-term average throughput
maximization is proposed, leading to a mean throughput within
a constant gap from the optimum [10]. Outage minimization
with energy harvesting transmitters and receivers is studied
and several online algorithms are established [11] [12].

The most related work to ours is [13], in which the
worst case ratio between the completion time under online
algorithms and the offline optimum is analyzed. This paper
shows that there is a lower bound of 1.38 for the competitive
ratio of online algorithms in a single-user additive white
Gaussian noise channel, and 1.356 for a two-user multiple
access channel. Additionally, a 2-competitive lazy algorithm
is proposed. However, the tight bound of competitive ratio
remains unknown.

In contrast to average-case analysis, which is widely applied
in communication systems, a deterministic evaluation provides
important information about the overall performance of an
algorithm. Especially in communication systems where trans-
missions are vital to the receiver and are triggered infrequently,
a worst-case performance bound is of interest in order to
insure a reliable transmission and a satisfying quality of
service, additional to mean-value evaluation. Such applications
include wireless sensor networks for malfunction detection
and alarming, automatic braking systems, and other safety-
sensitive scenarios. Besides, while average-case performance
depends on the modeling of random events and the extraction
of system parameters, worst-case analysis offers a global view
of the system and is robust to the uncertainty of an stochastic
process. It is also worth mentioning that since simulations
cannot efficiently trace all the possible energy arrivals for an
energy harvesting system, a theoretical analysis is crucial for
obtaining the performance bound in this problem.

To the best of our knowledge, there has not been a known
performance bound for online completion time minimization
with energy harvesting transmitters, especially for the case
of general energy arrivals and general rate-power function. In
this paper, the basic problem with time-invariant channels and
infinite-sized battery is characterized, and the problem of com-



pletion time minimization is investigated from a competitive-
analytic perspective. This problem is thereafter formulated as
a two-person zero-sum game, which has a value of 2, to obtain
the tight lower bound of competitive ratio of online algorithms.
The main contributions of this paper are summarized as
follows:

1) An online case with general rate-power functions is
studied. The results in this paper do not rely on an
explicit rate-power mapping, instead of which only a few
basic properties about the function are assumed. The most
distinctive assumption about the function is the concavity,
which is commonly encountered.

2) The infimum of competitive ratio of online algorithms is
proved to be 2. In other words, for online algorithms,
the largest ratio between the actual completion time and
the offline optimum is no less than 2. This indicates that
both the two algorithms proposed in this work are optimal
from the worst-case point of view.

3) Two intuitive algorithms are proposed. It is proved
that an algorithm named Linger-On-then-Keep-Invariable
(LOKI) achieves the minimum competitive ratio. An im-
proved version of LOKI is shown. Comparison between
the two algorithms and the generalized lazy online (GLO)
algorithms proposed in [13] is given.

The outline of the rest of the paper is as follows. The
next section explicitly describes the system model, presents
basic assumptions and offers some preliminary concepts of
competitive analysis. The main results is first presented in
Section III. Section IV introduces the online algorithm LOKI.
Several properties of energy arrival process and online policies,
with which the action sets of the nature and the designer are
reduced, are presented in Section V. Then, the two-person
zero-sum game formulation of this problem is established in
Section VI, based on which the infimum of competitive ratio is
obtained. Properties of three optimal algorithms are discussed
in Section VII. The last section concludes this paper.

II. SYSTEM MODEL

Consider a time-slotted energy harvesting system as shown
in Fig. 1. At the first time slot t = 0, the transmitter is
requested to deliver a packet of D bits to the receiver. The only
available power source of the transmitter is an energy harvest-
ing module that harvests energy from renewable sources. At
each time slot t ∈ N, the harvested energy, denoted by e(t), is
stored in an infinite-sized battery. With complete unawareness
of all the information about the energy harvesting process
E = {e(t), t ∈ N}, including the statistical distribution or the
average rate of the harvesting dynamics, the transmitter looks
for an online algorithm π to manage currently available energy
in the battery, determines the transmit power p(t) at each slot
t ∈ N>0, and delivers the packet to the receiver as quickly
as possible. Here, we assume that the energy consumption for
auxiliary actions at the transmitter side, such as calculation
and decision-making, is negligible compared with transmission
over the air, so that only the transmit power is considered in
the sequel.

Fig. 1. Energy harvesting system with completely random energy arrivals
and an infinite-sized battery

Due to causality requirements on energy, the allocated
transmit power p(t) can not exceed currently available energy
B̂(t) in the battery, i.e.,

p(t) ≤ B̂(t), (1)

where

B̂(t) =

t−1∑
τ=0

e(τ)−
t−1∑
τ=1

p(τ). (2)

After the power allocation, the transmitter sends out a signal
going through a time-invariant channel with a rate-power
mapping g : R≥0 7→ R≥0 from transmit power to channel rate,
or the number of bits transmitted in a slot. The rate function
g(·) is assumed to have the following properties:

1) g(·) is monotonically increasing;
2) g(·) is strictly concave;
3) g(0) = 0, and g(·) is unbounded;
4) There exists a constant α, such that

α = lim
x→0

g′(x).

Some remarks are as follows. In the first two assumptions,
monotonicity and concavity of the rate function together
indicate the law of diminishing marginal utility, which refers to
the decrease in marginal increment of channel rate as transmit
power rises. This property suggests a uniform allocation of
energy throughout different slots in order to maximize short-
term throughputs. The third assumption admits the possibility
that an extremely high transmit power produces desirable
channel rate, while the fourth assumption forbids the exchange
of high latency for excessively low energy consumption by
the finiteness of α, which is a scale coefficient between the
channel rate and the transmit power when transmitting at an
extremely low power level.

Here are some examples supporting the rationality of the
above assumptions about channel rate. For static additive white
Gaussian noise (AWGN) channels with transmit power P
and noise variance N , the classic Shannon’s function C =
1
2 log(1 + P/N) satisfies all of the four conditions. Further,
note that the single receiver in Fig. 1 does not indicate a single-
input-single-output (SISO) channel, where the transmitter is



dedicated to a single receiver. In fact, the analysis in this
paper applies to all the channel types with a qualified sum-rate
function, such as the one of two-user multiple-access channel
with uncoordinated coding described in [13], which multiplies
the channel rate and the transmit power in Shannon’s function
by a scale factor and does not affect the concavity. Similar
extensions can be made to multiple-receiver scenarios.

For brevity, we also denote the size of unfinished task at
the beginning of slot t by D̂(t), such that

D̂(t) = D −
t−1∑
τ=1

g(p(τ)), ∀t ∈ N>0. (3)

A. Offline Optimum

Given energy arrival profile E and data size D, the offline
minimum completion time is the solution to the following
program:

minimize T (4)

subject to
t∑

τ=1

p(τ) ≤
t−1∑
τ=0

e(τ), ∀t ∈ {1, 2 · · · , T}, (5)

T∑
τ=1

g(p(τ)) ≥ D. (6)

Constraint (5), which is equivalent to (1), stands for the
causality constraint in energy before the transmission is com-
pleted. Upon the termination of transmission, at least D bits
are delivered to the receiver, which explains (6).

An offline completion time minimization problem is sim-
ilar to finite-horizon throughput maximization, which can be
written as

maximize
T∑

τ=1

g(p(t)) (7)

subject to
t∑

τ=1

p(τ) ≤
t−1∑
τ=0

e(τ), ∀t ∈ {1, 2 · · · , T}.

The optimal result of completion time minimization is
identical with the smallest time length T in which the optimal
throughput of (7) is greater than or equal to requested data size
D. Besides, Theorem 2 in [3] summarizes some insights into
the relationship between completion time minimization and
throughput maximization. It states that the power allocation
schemes of the two problems are identical for correspondent
data size (throughput) D and time length T . This property sug-
gests that a throughput maximization algorithm can be easily
transformed into a completion time minimization algorithm,
and an optimal offline algorithm is given in [3].

B. Online Settings

Consider the online case where only historical energy ar-
rivals are known to the transmitter. In every time slot t, the
transmitter observes the size D̂(t) of the remaining data in the
buffer, previous energy arrivals Et−1, and previous allocations
pt−1, where

Et = (e(0), e(1), · · · , e(t))

and
pt = (p(1), p(2), · · · , p(t)),

and selects a certain power level for transmission. Our goal
is to minimize the completion time T of the transmission of
data with size D, i.e., to find an online algorithm π, which
depends only on pt−1, Et−1, and D, such that algorithm π
leads to a relatively small completion time T (π,E) satisfying
D̂(T (π,E) + 1) = 0 and (1)–(3).

The deficiency of future information brings a dilemma for
the transmitter. On one hand, the optimal offline algorithm
suggests a relatively conservative power allocation scheme,
i.e., spending less energy at the very beginning of transmission
and increasing the transmit power at certain energy arrivals
points, which might leads to a long transmission time. On the
other hand, an aggressive algorithm could result in the shortage
of available energy for subsequent transmissions, even possibly
in failing to deliver the required D bits of data.

C. Competitive Analysis

Since neither prior probability distributions nor statistical
characteristics of energy arrival process E is assumed, a
distributional or average-case analysis is impractical. Here,
we adopt competitive analysis and study completion time
minimization from a worst-case viewpoint to evaluate the
performance of an online algorithm. Relevant definitions in
[14] and some notations are as follows:

Denoting the offline result of (4) under a certain energy
arrival process E = {e(t), t ∈ N} as Toff (E), an online
algorithm π is said to be strictly c-competitive if for all the
energy arrivals E that the offline completion time Toff (E) is
finite, the completion time T (π,E) is upper bounded as

T (π,E) ≤ c · Toff (E).

The competitive ratio of π is defined as the infimum of all the
c that π is called c-competitive. Equivalently, the competitive
ratio of π is denoted as λ(π) and the following equation holds:

λ(π) = sup
E

T (π,E)

Toff (E)
. (8)

Further, an online algorithm π is called competitive if it attains
a finite competitive ratio, i.e., λ(π) < +∞.

Since online results are always no better than its offline
optimum counterparts, we have

λ(π) ≥ 1, ∀π,

which means that the competitive ratio of online algorithms
are lower bounded. Our goal is to find the tight bound of
competitive ratio of online algorithms for completion time
minimization with a general rate-power function g(·):

inf
π

λ(π) = inf
π

sup
E

T (π,E)

Toff (E)
.

Further, an online algorithm π∗ is called optimal if it attains
the minimum competitive ratio infπ λ(π).



III. MAIN RESULT

Here we summarize the main conclusion of this paper in
the following theorem.

Theorem 1: With an infinite-sized battery and a time-
invariant rate-power function satisfying the four assumptions
in Section II, the infimum of competitive ratio of online
algorithms for completion time minimization is 2:

inf
π

sup
E

T (π,E)

Toff (E)
= 2. (9)

Other than seeking an optimal algorithm after obtaining
the lower bound, we first propose a simple 2-competitive
algorithm in the next section, then prove the main theorem
via this algorithm in Section VI.

IV. 2-COMPETITIVE ONLINE ALGORITHM

Here we propose a Linger-On-then-Keep-Invariable(LOKI)
algorithm, which is simpler but also 2-competitive.

Algorithm 1 LOKI for completion time minimization
Input: D;

1: t← 0;
2: B ← 0;
3: repeat
4: Harvest an energy packet of size e(t);
5: B ← B + e(t);
6: t← t+ 1;
7: until t · g(Bt ) ≥ D;
8: P0 ← B

t ;
9: repeat

10: Transmit with power level P0 at slot t;
11: t← t+ 1
12: until transmission completed.

Algorithm LOKI is rather intuitive. It postpones the trans-
mission until adequate energy and time, with which the data
can be delivered, is gained. With energy arrival process E, the
allocated transmit power of each time slot can be given as

p(t) =

{
0, t = 1, 2, · · · , T1 − 1;

P0, t = T1, T1 + 1, · · · , TLOKI(E),

where T1 is the time slot in which the transmission begins,
i.e., the smallest integer that satisfies

T1 · g(
∑T1−1

τ=0 e(τ)

T1
) ≥ D,

and

P0 =

∑T1−1
τ=0 e(τ)

T1
.

It is easy to show that LOKI does not violate the causality
constraint in (1). Since the transmission can be completed with
a power level of P0 in T1 slots, the second repeat-until iteration
terminates in T1 slots, therefore the energy accumulated before
t = T1 is enough for the transmission.

Although LOKI might seem slightly pessimistic and con-
servative, it actually attains a simple form as well as a good
performance. Additionally, it will show great importance in
subsequent analysis on the infimum of competitive ratio in
Section VI. In this section, we first look into the characteristics
of LOKI by introducing the following theorem.

Lemma 1: LOKI attains a competitive ratio of 2.
Proof: First, we prove that the offline minimum completion

time Toff is no less than T1 by reductio ad absurdum.
According to the algorithm, T1 is the result of the following

program:

minimize t

subject to t · g(
∑t−1

τ=0 e(τ)

t
) ≥ D,

t ∈ N.
Thus, we get

t · g(
∑t−1

τ=0 e(τ)

t
) < D, ∀t = 1, 2, · · · , T1 − 1. (10)

Assuming that the offline optimal solution is {p∗(t)}t>0 and
it leads to an offline completion time of Toff , we have

Toff∑
τ=1

g(p∗(τ)) ≥ D (11)

with one of the causal constraints
Toff∑
τ=1

p∗(τ) ≤
Toff−1∑
τ=0

e(τ).

Due to the concavity and monotonicity of rate-power function
g(·), we have
Toff∑
τ=1

g(p∗(τ)) ≤ Toffg(

∑Toff

τ=1 p∗(τ)

Toff
) ≤ Toffg(

∑Toff−1
τ=0 e(τ)

Toff
).

According to (10), if Toff < T1, then
Toff∑
τ=1

g(p∗(τ)) ≤ Toffg(

∑Toff−1
τ=0 e(τ)

Toff
) < D,

which contradicts (11). Therefore, the following inequality
holds:

Toff ≥ T1. (12)

Second, we show that the competitive ratio of algorithm
LOKI is no larger than 2. Since

T1 · g(P0) = T1 · g(
∑T1−1

τ=0 e(τ)

T1
) ≥ D,

the transmitter stays silent for the first T1 − 1 slots and needs
at most T1 time slots after slot T1 to fulfill the transmission,
so we have

TLOKI(E) ≤ 2T1 − 1 ≤ 2Toff − 1.

Thus, the competitive ratio of the LOKI algorithm satisfies

λLOKI = sup
E

TLOKI(E)

Toff (E)
≤ 2.



Third, we show that the competitive ratio is no less than
2. Consider an energy arrival process E = {e(t), t ∈ N} as
follows:

e(t) =

 g−1

(
D

T0

)
, t = 0, 1, · · · , T0 − 1;

0, otherwise.

The optimal offline strategy is to transmit with a constant
power level g−1

(
D
T0

)
during the first T0 slots, and

Toff (E) = T0, (13)

while LOKI suggests to transmit with the same power level
from slot T0, and

TLOKI(E) = 2T0 − 1. (14)

Dividing both sides of (14) by the corresponding side of (13),
and take supremum over T0 ∈ N, we have

λLOKI ≥ sup
T0

TLOKI(E)

Toff (E)
= 2.

Therefore, the competitive ratio of algorithm LOKI is 2.

V. REDUCING THE ACTION SET

Up to now, constraints on energy arrival processes are
hardly made, and online algorithms are required to follow
only the causality constraint of energy. Before introducing the
game-theoretic formulation of completion time minimization
in Section VI, we first look into the possible energy arrival
processes and power allocation algorithms to reduce potential
candidates of both sides, such that the problem can be simpli-
fied. Hereafter, we refer to the set of all the potential energy
arrival processes as the action set of nature, and the set of
all candidate power allocation algorithms as the action set of
the transmitter. The reduced action sets of both nature and the
transmitter are presented in the following two subsections.

A. The Action Set of Nature
Due to the fourth assumption about the rate function g(·), a

disproportionate amount of energy might result in the failure
of transmission, even in an offline setting. In order to make
this problem reasonable, the total energy harvested must be
adequately large. To obtain the action set I of nature, first we
introduce the following lemma.

Lemma 2: For an energy arrival process E = {e(t), t ∈ N},
the transmission of data with size D can be completed in a
finite length of time if, and only if, D < α

∑+∞
τ=0 e(τ).

Proof: Sufficiency: For any power allocation scheme
{p(t)}t>0, the size D(t) of data transmitted in the first t slots
satisfies

D(t) =

t∑
τ=1

g(p(τ))

< t · g

(∑t
τ=1 p(τ)

t

)

≤ t · g

(∑+∞
τ=0 e(τ)

t

)
.

The first inequality holds because of the concavity of g(·), and
the second is due to the causality constraint of energy. Taking
the limit of the last expression as t approaches infinity, we
obtain

D(t) ≤ lim
t→+∞

t · g

(∑+∞
τ=0 e(τ)

t

)

= lim
x→0

g′(x)

+∞∑
τ=0

e(τ)

= α
+∞∑
τ=0

e(τ).

Thus, any transmission to be fulfilled in a finite number of
slots must have a data size strictly less than α

∑+∞
τ=0 e(τ).

Necessity: Let ϵ =
−D+α

∑+∞
τ=0 e(τ)

2 > 0. Since D + 2ϵ =

α
∑+∞

τ=0 e(τ), there exists a positive integer T2, such that

α

T2−1∑
τ=0

e(τ) > D + ϵ. (15)

Meanwhile, because

lim
t→+∞

t · g

(∑T2−1
τ=0 e(τ)

t

)
= α

T2−1∑
τ=0

e(τ),

there exists another positive integer T3, such that

T3 · g

(∑T2−1
τ=0 e(τ)

T3

)
> α

T2−1∑
τ=0

e(τ)− ϵ. (16)

Allocating the energy as
p(t) = 0, t = 1, · · · , T2 − 1;

p(t) =

∑T2−1
τ=0 e(τ)

T3
, t = T2, · · · , T2 + T3 − 1,

and substituting (15) into (16), the total size of data that can
be transmitted in T2 + T3 − 1 slots is

T3 · g

(∑T2−1
τ=0 e(τ)

T3

)
> D.

Thus, the transmission can be fulfilled in a finite time interval.

Here, we define the action set I of the nature to be the set
of all energy arrival processes under which it is possible to
fulfill a transmission in an finite time length. Therefore, the
action set can be written as

I =

{
{e(t), t ∈ N} |

+∞∑
τ=0

e(τ) >
D

α

}
.

B. The Action Set of the Transmitter

Combined with the causality constraint, the action set Π of
the minimizer is defined to be the set of all competitive and
causal strategies, i.e.,

Π =
{
π|λ(π) < +∞, p(t) ≤ B̂(t), ∀t

}
. (17)



Denoting Algorithm 1 as πLOKI, since the competitive ratio
λ(πLOKI) = 2, πLOKI is both causal and competitive, thus
πLOKI ∈ Π. Here we give an evident lemma.

Lemma 3: (Reliability guarantee) For any strategy π ∈ Π,
the transmit power p(t) at each time slot t satisfies

αp(t)− g(p(t)) < max(αB̂(t)− D̂(t), 0). (18)

Proof: In order to guarantee the completion of transmission
in a finite time interval, according to lemma 2, the transmit
power must follow the constraint

D̂(t)− g(p(t)) < α
[
B̂(t)− p(t)

]
,∀t ∈ N>0, (19)

as long as there is enough energy, i.e.,

D̂(t) < αB̂(t).

The left-hand side of (19) equals the residual data at the
beginning of slot t + 1, and the right-hand side the upper
bound of the size of data that can be transmitted, assuming
no further energy arrivals after t. Adding αp − D̂(t) to both
sides of (19), (18) holds when D̂(t) < αB̂(t).

If D̂(t) ≥ αB̂(t), any power allocation p(t) > 0 might lead
to the failure in completion, thus bring a infinite competitive
ratio. Therefore, we have p(t) = 0, and (18) is also satisfied.

From lemma 3, the following corollary can be easily ob-
tained, and we will omit the proof.

Corollary 1: If α
∑t0−1

τ=0 e(τ) < D, then ∀π ∈ Π,∀t ≤
t0, p(t) = 0.

Corollary 1 gives a hint about the structure of Π. It indicates
that for any competitive and causal strategy, the transmitter
would remain silent before the total amount of harvested
energy reaches a level associated with the data size D.

VI. A TWO-PERSON ZERO-SUM GAME

From a game-theoretic view, the original problem, which
focuses on finding an online algorithm with a minimum
competitive ratio, forms a two-person zero-sum game in pure
strategy. The kernel function of the game is given by

J(π,E) =
T (π,E)

Toff (E)
(20)

and we have
λ(π) = sup

E
J(π,E). (21)

In this game, the transmitter, or the strategy designer, decides
on the online algorithm and acts as the minimizer, while nature
seeks an energy arrival process E to maximize the kernel
function.

In accordance to [15], the upper value of this two-person
zero-sum infinite game is defined by

V = inf
π

sup
E

J(π,E), (22)

while the lower value is

V = sup
E

inf
π

J(π,E). (23)

If the upper value equals the lower value, i.e., V = V = V ,
then the game is said to have a value of V .

To illustrate the relation between the two-person zero-
sum game and the competitive analysis of completion time
minimisation, we substitute (21) into (22), and get

V = inf
π

λ(π),

which suggests that the upper value of the game equals exactly
the infimum of the competitive ratio of online algorithms.
Therefore, if the game has a value, it can be simpler to obtain
the tight lower bound of competitive ratio.

However, it is evident that the original game does not have
a value, since V = 1 and V > 1. But with the reduced action
set Π× I, the game has a value of 2, i.e.,

sup
E∈I

inf
π∈Π

J(π,E) = inf
π∈Π

sup
E∈I

J(π,E) = 2. (24)

The proof is given in the rest of the section.
Lemma 4: For any positive value ϵ, this game has an ϵ

saddle point. More explicitly, ∀ϵ > 0, ∃ (π∗, E∗) ∈ Π×I, s.t.
∀ (π,E) ∈ Π× I,

J(π∗, E)− ϵ ≤ J(π∗, E∗) ≤ J(π,E∗) + ϵ (25)

Proof: Construct an energy arrival process E∗
T0

=
{e∗T0

(t), t ∈ N} as

e∗T0
(t) =

 g−1

(
D

T0

)
, t = 0, 1, · · · , T0 − 1;

0, otherwise,

and let l(T0) represents the integer satisfying

D

αg−1
(

D
T0

) − 1 ≤ l(T0) <
D

αg−1
(

D
T0

) . (26)

Dividing (26) by T0, the inequality becomes
D
T0

αg−1
(

D
T0

) − 1

T0
≤ l(T0)

T0
<

D
T0

αg−1
(

D
T0

) . (27)

Taking limit as T0 approaches infinity at both sides of (27),
we have

lim
T0→+∞

D
T0

αg−1
(

D
T0

) = lim
T0→+∞

l(T0)

T0
= 1.

Therefore,

lim
T0→+∞

l(T0)

T0
= 1. (28)

It is obvious that the optimal offline strategy under E∗
T0

is

to transmit with a constant power level g−1
(

D
T0

)
at the first

T0 slots, and
Toff (E

∗
T0
) = T0.

For online strategies, according to Corollary 1, any strategy
π ∈ Π will not choose to transmit before l(T0) + 1, since

l(T0)−1∑
τ=0

e∗T0
(τ) = l(T0)g

−1

(
D

T0

)
<

D

α
.



Also notice that all algorithms need at least T0 slots for
transmission, thus

T (π,E∗
T0
) ≥ l(T0) + T0, ∀π ∈ Π. (29)

Dividing both sides of (29) by offline optimum T0, we get

J(π,E∗
T0
) ≥ 1 +

l(T0)

T0
.

Since in (28) the limit of l(T0)
T0

is 1 as T0 goes to infinity, we
have that ∀ϵ > 0, ∃N0(ϵ) ∈ N+, s.t. ∀T0 ≥ N0(ϵ),

l(T0)

T0
≥ 1− ϵ,

therefore
J(π,E∗

T0
) ≥ 2− ϵ.

Recall algorithm LOKI proposed in section IV. We have

J(πLOKI, E) ≤ λ(πLOKI) = 2, ∀E ∈ I.

For any ϵ > 0, let T0 = max
(
N0(ϵ), ⌈ 1ϵ ⌉

)
, and π∗ = πLOKI,

then ∀π ∈ Π

J(π,E∗
T0
) + ϵ ≥ 2

≥ J(π∗, E∗
T0
).

And ∀E ∈ I,

J(π∗, E)− ϵ ≤ 2− ϵ

≤ 2− 1

T0

≤ J(π∗, E∗
T0
).

Thus, inequality (25) holds.
According to Theorem 4.1 in [15], a two-person zero-sum

game has an ϵ saddle point for every positive value ϵ if, and
only if, this game has a finite value, and the value equals the
limit of the Cauchy sequence {Jϵk(π∗, E∗)}k with ϵk+1 <
ϵk and limk→+∞ ϵk = 0, where Jϵk(π

∗, E∗) represents the
middle item of (25) with ϵ = ϵk . Therefore, we have the
main result in Section III, and Theorem 1 is proved below.

Proof: First, we prove that the two-person zero-sum game
has a value of 2 in pure strategy. Applying the ϵ saddle points
found in the proof of Lemma 4, the limit of the Cauchy
sequence is

lim
k→+∞

Jϵk(π
∗, E∗) = lim

ϵ→0
J(π∗, E∗

T0(ϵ)
)

= lim
T0→+∞

2T0 − 1

T0

= 2.

Therefore, we have

sup
E∈I

inf
π∈Π

J(π,E) = inf
π∈Π

sup
E∈I

J(π,E) = 2

holds.
Substituting the kernel function (20) into (24), the equation

is given by infπ∈Π supE∈I
T (π,E)
Toff (E) = 2, which is quite

similar to the left-hand side of (9). The only difference is

Fig. 2. The energy allocation policies of offline optimum and LOKI under a
certain energy arrival process

that the action sets in the zero-sum game are restricted to all
competitive and causal algorithms and all reasonable energy
arrival processes. Thus, any causal algorithms that are not in Π
must have a competitive ratio of infinity, so the above equation
can be extended as

inf
π

sup
E∈I

T (π,E)

Toff (E)
= 2.

With all energy arrival processes that might lead to a finite
completion time included in I, it is sufficient to conclude
that the infimum of competitive ratio of online algorithms for
completion time minimization is 2.

VII. DISCUSSION

An energy arrival instance and its allocation schemes under
the offline optimum, LOKI, and GLO in [13] are illustrated in
Fig. 2. The solid line represents the total amount of harvested
energy up to the corresponding time slot, while the short-
dashed line stands for the strategy that leads to the shortest
completion time, the dot-dashed line for the policy suggested
by LOKI and the long-dashed line for the policy by GLO.
In the instance, we assume that the rate-power function is
g(p) = log(1 + p) and the data size D = 4, thus the
transmission can be completed with four units of energy and
four time slots, i.e., 4× g(1) = D. Since the available energy
at the first slot is less than one unit, the transmission can not be
completed in four slots, and the optimal strategy is to use up all
the initial energy at the first slot, then set the transmit power to
an constant level during the following four slots, which gives
a total completion time of five slots. With algorithm LOKI,
the transmitter waits for three slots, and then allocates the
harvested energy equally to the following four slots. Under
GLO algorithm, the transmission does not start until the third
slot as well because of energy shortage. It first transmits with
0.5 unit of energy at the third slot and increases the power to
0.875 at the fourth slot. For both LOKI and GLO algorithm,
the completion time is seven slots, which is less than the twice
of the offline minimum.

Theorem 1 gives the tight lower bound of the competitive
ratio. It is proved that both the GLO algorithm in [13] and



LOKI reach the minimum competitive ratio of 2, which sug-
gests that they are optimal from the worst-case viewpoint. With
GLO implemented, the controller needs to set the transmit
power to a reasonably higher level at each energy arrival,
which might require excessive computational steps, thus bring
unacceptable delay as well as energy consumption. Instead,
LOKI shows better potential for facilitating computation by
distributing these overhead expenses to the slots before the
actual transmission begins. Besides, for the case where energy
is harvested frequently and the harvested energy in each time
slot is relatively low, LOKI greatly reduces the calculation
cost.

Further, several other optimal algorithms can be established
through similar method. For example, a simple modification
can be made to LOKI by replacing the constant transmit power
with time-adaptive ones, as described in Algorithm 2. This
algorithm increases the transmit power at each energy arrival
after the transmission begins, while LOKI only utilizes the for-
mer accumulated energy once the transmitter starts to deliver
the data. It is obvious that this algorithm is always ’ahead’
of LOKI, thus optimal. However, more computation steps are
required at the transmitter’s side. Although computational cost
is not considered in this work, the tradeoff between completion
time and actual calculation costs exists among the optimal
algorithms in real systems.

Algorithm 2 Another 2-competitive online algorithm for
completion time minimization
Input: D;

1: t← 0;
2: B ← 0;
3: repeat
4: Harvest an energy packet of size e(t);
5: B ← B + e(t);
6: t← t+ 1;
7: until t · g(Bt ) ≥ D;
8: repeat
9: if e(t) amount of energy is harvested then

10: B ← B + e(t);
11: P0 equals the largest real number p satisfying ⌊Bp ⌋ ·

g(p) ≥ D;
12: end if
13: Transmit with power level P0 at slot t;
14: D ← D − g(P0);
15: B ← B − P0;
16: t← t+ 1;
17: until transmission completed.

VIII. CONCLUSIONS

In this work, we study the delivery of information from an
energy harvesting transmitter with an infinite-sized battery to
other nodes through a time-invariant channel with a concave
rate-power function. The problem of completion time mini-
mization is investigated through competitive analysis. By a
game-theoretic method, the infimum of competitive ratio of

online algorithms for this problem is proved to be 2. In other
words, for any online algorithm, the supremum of the ratio
between its completion time and the one of the offline opti-
mum over all possible energy arrivals is no less than 2. Two
new algorithms for this problem, under which the transmitter
stays silent until enough energy and time is accumulated, is
proposed. The comparison of optimal algorithms is given, and
the characteristics of these algorithms is discussed. It is shown
that the lower bound of 2 can be achieved with relatively small
computational overhead.
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