An Index Based Task Assignment Policy for
Achieving Optimal Power-Delay Tradeoff in Edge
Cloud Systems

Xueying Guo*, Rahul Singh', Tianchu Zhao* and Zhisheng Niu*
*Tsinghua National Laboratory for Information Science and Technology, Tsinghua Uviersity, P. R. China
Email: {guo-xyll, zhaotc13} @mails.tsinghua.edu.cn, niuzhs @tsinghua.edu.cn
TLaboratory for Information and Decision Systems, Massachusetts Institute of Technology, USA
Email: rsingh12@mit.edu

Abstract—Edge cloud is a promising architecture in order
to address the latency problem in mobile cloud computing.
However, as compared with remote clouds, edge clouds have
limited computational resources, and higher operating costs. In
this paper, we design policies which carry out the assignment
of tasks that are generated at the mobile subscribers with edge
clouds in an online fashion. The proposed policies achieve an
optimal power-delay trade-off in the system. Here, the delay
experienced by a mobile computing task includes the time spent
waiting for transmission to the edge cloud, and the execution
time at the edge cloud servers. We perform a theoretical analysis
after modeling the system as a continuous-time queueing system.
The contribution of this paper is two-fold: Firstly, the algorithm
to determine the optimal policy is obtained by proposing an
equivalent discrete-time Markov decision process. Secondly, an
easily implementable index policy is proposed by analyzing the
dual of the original problem. Extensive simulations illustrate the
effectiveness of the proposed policies.

Index Terms—mobile cloud computing, edge cloud, power-
delay tradeoff, index policy

I. INTRODUCTION

Mobile cloud computing has drawn increasing attention
recently. This is due to the following two important trends
in the mobile networks. Firstly, smart phones have prolifer-
ated rapidly in recent years, which in turn has triggered an
explosion of mobile applications. It is reported that till Oct.
2015, Android market has more than 1.7 million applications
in total [1]. These applications improve the performance of
smart phones. But on the other hand, the computation-intensive
applications consume an enormous amount of battery energy,
which deteriorates the user experience [2]. Mobile cloud
computing is a promising technique to solve this problem
[2]-[4]. Secondly, with the advent of Internet of things (IoT),
the mobile subscribers in the future networks will be diver-
sified. It is reported that, the number of M2M devices in
the cellular network is expected to increase by 3-4 times by
2019 [5]. Thus, future mobile subscribers may have rather
limited computational and memory resources, so that the raw
data they generate should be pre-processed by mobile cloud
computing. Correspondingly, some mobile cloud computing
platforms have been designed and implemented, such as MAUI
[3] and Clonecloud [4].

CQ’;

AT /A
,gg | AN . ,/ |
\ \ “‘ UE)\

AL/;@ Cloud & J /‘

e A?’:/’ ’ ‘\ BS
Edge Cloud 3 " e BS
Fig. 1. An illustration of edge cloud systems.

However, a major issue with mobile cloud computing is that
of severe latency experienced by applications, which occurs
because the cloud servers are remotely deployed. The latency
is critical for delay-sensitive applications running on smart
phones [6], and for real-time tasks in the IoT systems. Yet,
with remotely deployed cloud servers, it is hard to meet
the delay requirement of mobile cloud computing since the
Internet transmission time is long and unpredictable [7].

These considerations have led to the proposal of edge cloud
architecture [8]-[10]. In this model, the cloud servers are
deployed locally to decrease the transmission delay for cloud
computing. For example, Cloudlet [8] is designed to realize
real-time responses by means of nearby cloud servers. In
[10], the authors propose a novel architecture that utilizes
computational resources in cellular networks in order to offer
mobile cloud computing services.

In contrast with the traditional remote clouds, the edge
clouds only serve nearby users, which results in a smaller
pooling gain and a higher operation cost. Results in [11]
shows that if the computational resources in an edge cloud



exceeds an upper bound, the extra investment will be wasted
without significant improvement in user-perceived QoS. This
means that in order for the edge clouds to be effective, they
should be densely deployed, while each of the individual
clouds has relative limited computational resources. Also, it
should be noted that the power-delay tradeoff is an important
problem in cellular networks [12], [13], which should be also
considered in the edge cloud systems. As a consequence,
the resulting distributed system demands a well designed
resource management mechanism in order to improve the
system performance for it to be cost-efficient. To this end,
we focus on the “task assignment” problem in edge cloud
systems, and optimize the system performance with respect to
two crucial metrics: a) the user-perceived delay, and, b) the
operational power consumed by the edge cloud servers.

Next, we provide an account of the previous works on the
task assignment in edge cloud systems. In [14], a system
of both edge and remote clouds is formulated, in which the
workload allocation problem is jointly considered with remote
cloud management. In this semi-static model, an approximate
solution is proposed by decomposition and is validated by
extensive simulations. In [15], the authors design a distributed
cloudlets system in which requests can be directed to proper
cloudlet on demand. However, during the experimental eval-
uation, the proposed heuristic method is seen to result in
large latency when the number of cloudlets is large. In [16],
the authors study a large scale operation of edge clouds. In
particular, the communication power consumed is considered
as a metric. These are preliminary studies, and the problem of
task assignment in edge clouds remains an open problem.

In this paper, we consider a hot-spot scenario with sev-
eral nearby edge cloud servers, and design an online task
assignment policy for mobile cloud computing. The policy
minimizes the weighted sum of the sojourn time of tasks
(which includes both, the transmission time, and the execution
time) and the operation power consumption of the edge cloud
servers. First, we model the problem as a continuous-time
queueing system. In order to make the analysis tractable,
we then propose an equivalent discrete-time Markov decision
problem (MDP) framework. Application of classic MDP tech-
niques yields us an optimal task assignment policy. In order
to reduce the computation complexity and communication
overheads associated with the implementation of this policy,
we analyze the associated dual problem and thereby design
an easily implementable “index policy”. Simulation results
illustrate the effectiveness of the policies.

The rest of this paper is organized as follows. We describe
the continuous-time system model in Section II. In Section
III, we obtain the stationary optimal policy by proposing an
equivalent discrete-time MDP problem. The index policy is
designed in Section IV. Simulation results are presented in
Section V, followed by concluding remarks in Section VI.

II. SYSTEM MODEL

We begin with a description of the system model. Consider
a hot-spot area, i.e., an area which is densely populated with

a large number of mobile subscribers. This hot-spot area is
in the coverage area of several nearby base stations (BSs).
It is assumed that the edge clouds are well deployed so that
the mobile subscribers can access several edge clouds through
the nearby base stations, as illustrated in Fig. 1. For the time
being, we assume that each edge cloud server is connected to
only one of the nearby BSs. This occurs in practice due to the
limited computational resources at the edge clouds [11]. The
mobile subscribers in the hot-spot generate mobile computing
tasks, which have to be sent to one of the several nearby BSs.
The BS receives and forwards the task to the corresponding
edge cloud server. The task is then executed at this server, and
after that, the corresponding result will be finally transmitted
back to the subscriber which has generated the task. Our goal
is to design a policy that assigns the tasks to edge cloud servers
in an online fashion, and minimizes net cost of the system,
which is composed of the delay experienced by the tasks, and
the power consumption of the edge cloud servers.

The tasks generated in the dense area are assumed to form
a Poisson process with arriving rate A. The arriving rate A
depends on both a) the number of subscribers in the area, and,
b) the behavior of the wireless clients, and can be estimated
by statistical averaging. There are /N BSs installed in the area.
Because of the assumption that each server is connected to
only one of these BSs, it follows that the number of accessible
edge cloud servers is also N.

The time taken for an up-link transmission from the hot-spot
to the n-th BS is a random variable which is exponentially
distributed with mean (M%U))_l. Exponentially distributed
transmission time is widely used since it can capture the
re-transmission phenomenon in wireless communication [17].
Further, it is assumed that if there are several tasks waiting
to be delivered to the n-th BS, the transmission ability is
shared among these tasks. This is because in practice, the
transmission resources in a single BS, such as time slots or
sub-channels, are shared among mobile subscribers. To be
specific, if there are M tasks waiting to be delivered to the n-
th BS, the transmission service rate for each task is MELU ) /M.
Similarly, the down-link transmission time from the n-th BS to
the hot-spot is exponentially distributed with mean (/,L%D))_l,
and the down-link service ability is shared among ongoing
tasks.

The time taken for executing a task at a server is assumed to
be random. When a task is served by the n-th edge cloud, its
execution time is assumed to be exponentially distributed with
mean M%E). Note that the distribution of task execution time is
server dependent, since the servers may have different compu-
tational resources. The exponential distribution is widely used
in modeling the execution time of mobile computing tasks
[18]-[20]. It is an elementary approximation model and the
extensions for the case of general distributions is the subject
of future work. The computational service ability of each edge
cloud server is assumed to be equally shared amongst all the
tasks in the server. That is, a processor sharing [11], [21]
execution model is employed.



It is assumed that whenever there are tasks being executed
at server n, then the server n is in an “active” state, and
hence consumes a power of &, units per unit amount of time.
However, if there are no tasks being executed at server n, it
is switched “off” so that it consumes no power.

We are interested in optimizing the system operation with
respect to the following two metrics a) the delay perceived
by the users, and b) the total operational power consumption.
Thus, our goal is to design a task assignment policy that
minimizes the following system cost,

nD + &, (1

where D is the time-average sojourn time (including trans-
mission time and execution time) of the tasks, 5 is the time-
average operation power for this N-server system, and 7 is a
positive weighting parameter.

III. AN EQUIVALENT DISCRETE-TIME MARKOV DECISION
PROCESS

A. Continuous-Time Queueing System

When a task is assigned to the n-th server, it first waits
to be delivered to the n-th BS. Upon its delivery to the n-th
BS, it is further delivered to the n-th edge cloud server, and
then waits in the server until the execution is finished. Then
it has to wait again at the BS in order to be delivered back
to the subscriber where it was generated. Thus, we assume
that the BS and servers maintain buffers in order to store the
waiting tasks. For each BS-server pair n, the tasks waiting in
order to finish up-link transmission, execution, and down-link
transmission are buffered in a single compound queue. The
queue length of the n-th queue is denoted Q,.

Since for each BS-server pair, both the transmission and
execution times are exponentially distributed, the service time
taken at each of the N compound queues has exponential
distribution. Further, the mean service time for tasks in the
n-th queue is,

iyt = ()7 + ()T WP v (@)

In each queue, the processor sharing service discipline is
used. Thus, when the queue length of the n-th BS-server
pair is (), each task in the m-th queue has a departure
rate fi,/Qn. Yet, the total departure rate of queue n is
ZZQ:”I bn/Qn = pin,¥Qn # 0, which remains the same for
any non-zero queue length. In addition, to ensure stability, we
assume \ < ZnN:1 JT.
We begin with some preliminary results.

Lemma 1. If the arrivals are Poisson with rate of )\, then
when the system is stable, the mean sojourn time of the tasks
in the system satisfies,

D:

> =

N
> Qn, 3)
n=1

where @,, denotes the time average length of the n-th queue.

Proof. Consider the combined system of N queues. Then the
statement of (3) follows from the Little’s Theorem [22]. [l

B. Conversion to Discrete-Time Problem by Uniformization

The problem, as stated above involves a continuous-time
discrete space Markov model. In order to simplify the expo-
sition, we will now convert the model proposed above into
an equivalent discrete-time model. Firstly, if at any time a
queue is empty, we will assume that the corresponding server
is serving a dummy task. Then, by sampling the system at time
epochs corresponding to an arrival or a task completion (real
or dummy) we obtain an embedded Markov chain having the
following important property: the lengths of the time slots of
this discrete-time system are statistically the same with mean
1/(A + 2N 4,). This conversion process follows from the
standard uniformization technique, as in [23].

We will index the discrete time-slots in the resulting discrete
time system by t. Note that for this system, in each slot ¢,
either an arrival or a departure (real or dummy) from one of
the queues occurs. The probability of an arrival into the queue
nis A/(A+ 25:1 i), while the probability of a departure
(real or dummy) from queue n is p, /(A + ij:l hn,)-

Now, the average system cost incurred in a time horizon
comprising of 7' time-slots is given by,

1 1 T N .
R U En{Qn (1) 70} + T Qn(t) |
e IZPEh S A

where ), (t) is the length of queue n in slot ¢, E[] is
the expectation. The cost expression in (4) follows from the
construction process of the discrete-time problem, Lemma 1,
and the cost expression in (1).

C. Markov Decision Process

We pose the problem of carrying out assignments of arriving
tasks to a BS-server pair, in an online fashion, as an Markov
Decision process (MDP). Due to the discretization in Section
III-B, it follows that the arrival of a new task marks the
beginning of a new time-slot. Thus, an assignment policy
needs to make decisions only at the beginning of each time
slot ¢t. Consequently, the system evolves as a discrete-time
discrete-space Markov Decision Process (MDP).

Now, we formally address this equivalent MDP problem.
The system state at time ¢ is described by the vector Q(t) =
(Q1(t), - ,Qn(t)), where Q,(t) denotes the queue length
of the n-th queue. The system administrator has to choose the
decision vector U (t) = (Uy(t),--- ,Uy,(t) at each time slot t,
where U, (t) = 1 if a task arrival (if any) is assigned to the
n-th server at time ¢, and U, (t) = 0 otherwise.

Thus, the state of the system evolves as,

Qn(t) +1, if U, (t) = 1, with prob.
Qn(t) = A/ A+ 25:1 fin);
" o — i __Hn
max(Q,(t)—1,0), with prob. P ST
Qn(t), otherwise.

&)



Note that because of the discretization carried out in Section
III-B, at most one of the queue lengths @,,(¢) can change in
any time slot ¢. Then, the problem reduces to,

T—-1 N

max Tininf ZE[S" 3 "-10,.(1) - 1{Qa () # 06| ©
N t=0n=1
D Unt)=1, Vt=1,2,- (7

n=1
where 7 is any causal (i.e., history dependent) policy. Here,
the common multiplier in (4) is omitted, and we maximize the
reward instead of minimizing the cost.

Let Vr(q) denote the T-horizon optimal cost-to-go [24]
incurred by the system starting in initial state Q(0) = g,
where vector ¢ = (¢1, -+ ,qn). Then, the optimal cost-to-go
functions satisfy the following recursive relationship,

N
VT(q) = Z [72%1

- ]l{q" 7'é O}Sn}

n=1
+  ma A Vr—1 (A.(q))
X —— V-1 (Ay
we{l, N} )\+Zf:[=1un ot ?
a u
+ 3 —L—Vr1(Bala)), ®)

n=1 /\ + Zn:l Hn

where A, (q) is the system state subsequent to state ¢ when
a new task arrives and is assigned to queue u, i.e.,

Aulq) =

and B, (q) is the state subsequent to state ¢ when a task (real
or dummy) departs from queue n, i.e.,

Bn(q) = 170}7Qn+1a"'

D. Stationary Optimal Policy by Value Iteration

(qlv"' »Qu71;Qu+17Qu+1a" . 7qN)a

(Q17 e, ma‘X{Q’n_ 7qN)

Utilizing the optimal recursive relationship in (8), we can
obtain a stationary optimal policy in the following way:
First, let Vo(gq) = 0,Vq. Then, given Vpr_1(q) = 0,Vg,
determine Vr(q) = 0,Vq by (8), and further use the relative
value function by letting Vr(q) := Vr(q) — Vr(0), Vq. This
process is continued until the optimal relative optimal cost-
to-go functions remains the same after improvement, i.e.,
Vr(q) =~ Vr_i1(q),Vq. Here, the approximation equality
means that |V (q) — Vr_1(q)|/|Vr-1(q)| < € where € is a
small positive number. Then, the optimal control when the
system state is q is to assign the possible arriving task to the
u-th queue with v maximizing (8). Note that here the queue
lengths need to be truncated to make it a finite-state system.

The above way to determine a stationary optimal policy is
the standard value iteration technique. The reader can refer to
[24] for more details. Some other classic techniques such as
policy iteration can also be applied here in determining the
stationary optimal policy.

It should be noted that, although the stationary optimal
policy is obtained in the equivalent discrete-time system, this
can be directly applied to the continuous-time system. That is,

whenever a task arrives in the continuous-time system defined
in Section III-A, the system administrator examines the current
system queue lengths and applies the optimal control action
according the stationary optimal policy described above.

IV. INDEX PoOLICY DESIGN

In Section III-D, we have already found the algorithm to
determine a stationary optimal policy. However, this method
suffers from the problem of large communication overhead
and computational complexity.

Firstly, to implement the stationary optimal policy, a central
system administrator is needed which should be aware of
queue length of all the BS-server pairs at any time, and more-
over know all the system parameters, e.g., &, tin, V. This
causes huge communication overhead, which will deteriorate
user-perceived delay.

Secondly, the state space of the stationary optimal policy
increasing exponentially with increasing /N. This causes the
“curse of dimensionally” in classic MDP techniques [25]. That
is, computational complexity increases exponentially with the
number of edge clouds N. (Also, the memory to store the
stationary optimal policy increases exponentially with N.)

In this section, we overcome the above two problems
by developing an “index policy”. When an index policy is
implemented, each server first calculates an index according to
its own state, and then an arriving task is simply routed to the
server of the smallest (or largest) index. This “index policy” is
philosophically similar to the index policies in the multi-armed
bandit problems [26]. Papers [27], [28] have provide examples
in using index policies. In our hot-spot scenario, each BS
is aware of the state of itself and the corresponding edge
cloud server. Thus, it is capable to calculate its corresponding
index. Then, it keeps broadcasting the index, and the mobile
subscribers can simply send the task to the BS with the
smallest index. In this way, the complicated mechanism to
implement a stationary optimal policy is avoided. !

In the following, we design a low-complexity index policy
via analyzing the dual problem of the “relaxed version” of the
original problem in (6)-(7). The solution to this dual problem
leads to solving N one-dimensional problems, each involving
only one BS-server pair, called v-subsidy problems. The index
policy design follows from the threshold policies in the v-
subsidy problem.

A. The Relaxed Problem and Its Dual

We begin by mapping the MDP in Section III-C into another
equivalent MDP.

! Actually, this index-based access scheme can be realized by the traditional
SNR-based access scheme if the power control of the BS broadcasting signal
is well designed. This can be a future work of this paper.



Lemma 2. The problem (6)-(7) is equivalent to,

T—-1 N

max hm 1nf — [ ZZ En Un( )\Qn(t)} )

t=0n=1 Hn

Xﬁ%sz

That is, the problem (6)-(7) and the problem (9)-(10) have the
same optimal values and optimal policies.

V=12, (10)

Proof. See Appendix A.
Now, we further modify the equivalent MDP, and relax the
constraint in (10) to,

T-1

N
s.t. hmlnf— {ZZ
+=0 n=1

which is a time average constraint on system control U (t).
The Lagrangian dual function for the relaxed problem in
(9) and (11) is given by,

}:N—l, (11)

T—-1 N

d(y):max{l/(Nfl)—l/h%nlnf E[ZZl Un( }

g
t=0 n=1

TQ.0)]}-

(12)

T-1

1 N
+liminf —F [Zg

=0

By the super-additivity of limit inferior and the sub-additivity
of limit superior, we have,

N —

d(v) < max{ Zh:rrnsup E{Z *fn Un(t)
n=1 +7 t=0
— Q)] } -7, (13)

where the “less than or equal to” can be replaced by equality
if the limitation (instead of limit superior) of the r.h.s. exists.

B. v-Subsidy Problem and Threshold Policies

Motivated by the r.h.s. (rand-hand side) of (13), we consider
the case when the N queues evolve independently. Then the
r.h.s. of (13) is decomposed to N one-dimensional MDP
problems: In each one-dimensional problem, the single queue
evolves as in (5). Further, a reward v — Agn is earned
whenever Uy, (t) = 1, and a penalty 1Q,,(t) is caused to avoid
large queue length. Here, v acts like a subsidy to accept tasks,
so this problem is referred to as v-subsidy problem.

Now, we focus on this one-dimensional v-subsidy problem.
In the following, we assume A > p,,, Vn. This is not restrictive
considering the hot-spot scenario.

We begin by defining 6-threshold policy, denoted by 7, (6),
for any integer 6 > 0, as follows:

1 if Qn(t) <6

When 7, (0) is applied, U, (t) = {O £ Q1) > 0
1 n -

T (14

It directly follows that, when 7,,(0) is applied, the queue never
accepts any arriving jobs whatever the size of the queue length
is, i.e., Un(t) is always 0.

Theorem 3. Consider the v-subsidy problem for queue

n,Vn € {1,---, N}, the following results hold:
1) Threshold policy 7, (0) is optimal if and only if,
A
v< b+ L (15)
Hn Hn

2) For any § € {1,2,---}, the threshold policy 7, () is
optimal if and only if both of both the following hold,

V2 et o [0 5
+Xﬁn5fl (I:Bi—ﬁn } 16)
and (v — Mngn)ﬁf_ 5 < A(B +1)
X e
where By = “—; (18)

Proof. Whether a stationary policy is optimal can be studied
in this way: first, obtain the average reward and relative value
function associated with this stationary policy; then, check
whether this average reward and relative value function satisfy
the average cost optimality equation (ACOE) [29].

To be specific, for the v-subsidy problem, when 7, () is
applied, let J denote the time-average system reward of the
problem, and let f () denote the relative value function when
the queue length is i. (Note that the relative value function is
defined similar to the relative cost-to-go function as in Section
II-D. The reader may refer to [24] for more details.) Then,

Fli)+T = | Guli) =i + S0
_ Hn x(i—1,0
+A+Z§=1 Mkf(ma (3 ))
A N .
+m“(l)ﬂl+1)a Vi=0,1,---, (19)

where the u(3) is the system control U, (t) when the state is
Q@ (t) = 4, which can be decided by , () recalling (14). The
meaning of the r.h.s. of (19) is clear: the terms in the square
bracket is the reward incurred in state 7, and the other terms
correspond to the possible system states subsequent to state
i. Further, since f(-) is a relative function, with out loss of
generality, set,

f(0) =0. (20)

Combining (19) and (20), we obtain the value of J and
f (@), Vi. The detail results are omitted due to space constraints.
Then, by checking when «(7) maximize the r.h.s. of (19) for
all 7, the results in (15)-(17) follow. ]



C. Index Policy Definition

We are motivated by (15)-(17) to design the index policy.
The inequality (16) is a necessary condition for 7, (6) to be
optimal. Recall the definition of 7, (6) in (14), then the r.h.s.
of (16) can also be interpreted as the minimum subsidy that
server n will accept an arriving task when the system state is
0—1. In this way, we define the index function of server n as,

Ao L iri=o;
Hn n
A 1 n,.
Wn(l)é Eﬁn + m [X(Z+1)(1 - Bn)
(1) | . .
7 n i — Ba(i+1)] ...
+/\5n =3, , if 1 #0,
21

where we recall that 3,, u, is defined in (18) and (2).

Then our index policy assigns an arriving task to the edge

server with the minimum index, i.e., the server number is,
U(t) =arg, _min {Wi(Qk(t))},
and the ties are broken arbitrarily.

Note that although the transmission probability of queue n
depends on the service rate of other edge-servers, as shown
in (5), the index function of queue n in (21) only depends on
its own state/parameters and the overall arrival rate A. This
facilitates the implementation of the index policy.

Remark. Tt can be easily derived that W), (¢) is an increasing
function of . As a result, in the homogeneous case, i.e., when

%U), NLE), ung),ﬁn are identical for different edge servers,
our index policy is the join-the-shortest queue policy.

V. SIMULATIONS

We present the results of a simulation study for the hot-spot
scenario. The parameters are set as follows>: N = 3, A\~ =
2ms, pl_l = 5ms, u:,_l = 3.3ms, ugl = 2.5ms, & = 1kW,
&y = 2kW, &3 = 4kW.

Fig. 2 presents the performance of both the stationary
optimal policy (recalling Section III-D) and the index policy
(recalling Section IV-C). These two policies are compared
according to their average system costs in (1) for different
weighting parameter 7. It can be seen that the difference
of the costs of two policies are relatively small: the relative
differences are 6.1%, 5.7%, 2.5%, 2.9%, 6.5% for weighting
parameter n = 0.5, 1, 1.5, 2, 2.5, respectively. This means
the index policy is effective in the cases we simulated.

In Fig. 3, the tradeoff relationship between the mean delay
and system power consumption is shown. This tradeoff curve
is obtained by varying the weighting parameter 7. It can be
seen that a larger 7 leads to a smaller mean delay but a larger
power consumption. This can be interpreted as follows: when
7 increases, more effort is paid to minimize the queue length.
Thus, an arriving task is tend to be assigned to a queue with

2Here, instead of setting all the values of pﬁf”, ,uﬁLE), ,uSLD), we only set

Wn, Which is defined in (2), since it is the key parameter for the system.

10 B
g -
g 8-
§
g T
>
%]
g of
©
g 51
T —-©- Optimal Policy
—>-Index Policy _|
! !
8.5 1 1.5 2 25

Fig. 2. The total system cost vs. delay weighted parameter n for different
task assignment policies are shown.

8 T
n=0.03 —>-Index Policy|
7k _|
@
£ 6
g
(]
©
< 5- -
(]
S
a- _|
3
3 ! ! ! !
1.75 1.8 1.85 1.9 1.95 2

time—average power consumption (kW)

Fig. 3. Mean delay vs. operation power consumption by changing 7.

higher service rate p,, even when the efficiency of the server,
ie. /&y, is relatively low.

VI. CONCLUDING REMARKS

In this paper, we have posed, and theoretically analyzed the
problem of designing an efficient task assignment policies in
edge cloud systems for mobile cloud computing.

The assignment policies proposed in this paper optimize
the system performance by jointly minimizing the sojourn
time of the mobile computing tasks (that includes the wireless
transmission delay and task execution time) and the operation
power consumption of edge cloud servers.

Our analysis started by formulating the optimization prob-
lem as that involving a continuous-time queueing system. In
order to make it tractable, we then converted it to an equiv-
alent discrete-time Markov decision process. Thereafter we
utilized classic MDP techniques to derive algorithms in order
to determine the stationary optimal policy. However these
policies suffered from being too computationally complex, and
involved enormous communication overheads. Thus, we pro-
posed a so-called “index policy”, which can be implemented
easily in the existing mobile networks, and moreover does not
suffer from the curse of dimensionality. We have conducted
simulation studies, results of which validate the effectiveness
of the policies. The simulation results have shown that the
trade-off between the power and delay can be flexibly adjusted
by the weighting parameter in the system cost.



ACKNOWLEDGMENT

This work is sponsored in part by the National Basic Re-
search Program of China (973 Program: No.2012CB316001),
the Nature Science Foundation of China (61571265,
61321061, 61401250, 61461136004), and Intel Collaborative
Research Institute for Mobile Networking and Computing.

APPENDIX
A. Proof of Lemma 2

Since A < 2521 I4n, there exist policies that make the
queue stable [30]. Then the optimal policy of the problem
must result in a stable queue since the optimization object (6)
includes the queue length.

Further, when the queue is stable, the following holds,

T-1 N
A | Hn,
liminf =E| —1{Qn(t) # 0} ——x—&l
i 2 2 NS S
= liminf lE[Tzi1 i -U, (t)$f ] (22)
S Toe T t=0 n=1 " A'*‘Zf:l:“n "

where the Lh.s. can be interpreted as assigning a reward &,
whenever a task leaves queue n, and the r.h.s. of (22) can
be interpreted as assigning a reward —¢, whenever a task
arrivals in queue n. Thus, by combining (22) with (6), Lemma
2 follows.

REFERENCES

[1] AppBrain Report. [Online]. Available: http://www.appbrain.com/stats/
number-of-android-apps

[2] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” IEEE Computer, no. 4, pp. 51-56,
2010.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proc. Int. Conf. Mobile Syst., 2010, pp. 49-62.

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proc. 2011
European Conference on Computer Systems, 2011, pp. 301-314.

[5] Ericsson Mobility Report 2014. [Online]. Available: http://www.
ericsson.com/mobility-report

[6] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Communications of the ACM, vol. 49, no. 11, pp. 40-45, 2006.

[7] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay, “Variability in tcp round-
trip times,” in Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, 2003, pp. 279-284.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14-23, 2009.

[9] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while

computing: Distributed mobile cloud computing over 5g heterogeneous

networks,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 45-55,

2014.

J. Liu, T. Zhao, S. Zhou, Y. Cheng, and Z. Niu, “Concert: a cloud-

based architecture for next-generation cellular systems,” IEEE Wireless

Communications, vol. 21, no. 6, pp. 14-22, 2014.

J. Liu, S. Zhou, J. Gong, Z. Niu, and S. Xu, “On the statistical

multiplexing gain of virtual base station pools,” in IEEE GlobeComi4,

Austin, USA, 2014.

X. Guo, S. Zhou, Z. Niu, and P. R. Kumar, “Optimal wake-up mecha-

nism for single base station with sleep mode,” in International Teletraffic

Congress (ITC), Sept 2013, pp. 1-8.

X. Guo, Z. Niu, S. Zhou, and P. R. Kumar, “Delay-constrained energy-

optimal base station sleeping control,” IEEE Journal on Selected Areas

in Communications, vol. 34, no. 6, pp. 1-1, June 2016.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

R. Deng, R. Lu, C. Lai, and T. Luan, “Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing,” in IEEE
International Conference on Communications (ICC), 2015.

J. Rawadi, H. Artail, and H. Safa, “Providing local cloud services to mo-
bile devices with inter-cloudlet communication,” in /EEE Mediterranean
Electrotechnical Conference (MELECON), 2014.

M. Al-Ayyoub, Y. Jararweh, L. Tawalbeh, E. Benkhelifa, and
A. Basalamah, “Power optimization of large scale mobile cloud comput-
ing systems,” in 2015 3rd International Conference on Future Internet
of Things and Cloud (FiCloud), 2015.

F. P. Kelly, Reversibility and Stochastic Networks.
sity Press, 2011.

Y. Feng, B. Li, and B. Li, “Price competition in an oligopoly market
with multiple iaas cloud providers,” IEEE Transactions on Computers,
vol. 63, no. 1, pp. 59-73, 2014.

T. Zhao, S. Zhou, X. Guo, and Y. Zhao, “A cooperative scheduling
scheme of local cloud and internet cloud for delay-aware mobile cloud
computing,” in IEEE Globecom Workshop, Accepted 2015.

M. Guevara, B. Lubin, and B. C. Lee, “Navigating heterogeneous proces-
sors with market mechanisms,” in IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA), Washington, DC,
USA, 2013, pp. 95-106.

S. Aalto, U. Ayesta, S. Borst, V. Misra, and R. Nuiiez Queija, “Beyond
processor sharing,” SIGMETRICS Perform. Eval. Rev., vol. 34, no. 4,
2007.

L. Kleinrock, Theory, Volume 1, Queueing Systems. Wiley-Interscience,
1975.

Z. Rosberg, P. Varaiya, and J. Walrand, “Optimal control of service
in tandem queues,” IEEE Transactions on Automatic Control, vol. 27,
no. 3, pp. 600-610, Jun 1982.

M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, 1st ed. New York, NY, USA: John Wiley & Sons,
Inc., 1994.

R. E. Bellman, Dynamic Programming.
2003.

P. Whittle, “Restless bandits: Activity allocation in a changing world,”
Journal of Applied Probability, vol. 25, pp. pp. 287-298, 1988.

X. Guo, R. Singh, P. R. Kumar, and Z. Niu, “Optimal energy-efficient
regular delivery of packets in cyber-physical systems,” in IEEE ICC,
June 2015.

R. Singh, X. Guo, and P. R. Kumar, “Index policies for optimal mean-
variance trade-off of inter-delivery times in real-time sensor networks,”
in I[EEE INFOCOM, April 2015, pp. 505-512.

A. Arapostathis, V. S. Borkar, E. Ferndndez-Gaucherand, M. K. Ghosh,
and S. I. Marcus, “Discrete-time controlled markov processes with
average cost criterion: A survey,” SIAM J. Control Optim., vol. 31, no. 2,
1993.

A. Stolyar, “Maxweight scheduling in a generalized switch: State space
collapse and workload minimization in heavy traffic,” Annals of Applied
Probability, vol. 14, no. 1, pp. 1-53, 2004.

Cambridge Univer-

Courier Dover Publications,



