
A Cooperative Scheduling Scheme of Local Cloud
and Internet Cloud for Delay-Aware Mobile Cloud

Computing

Tianchu Zhao, Sheng Zhou, Xueying Guo, Yun Zhao, Zhisheng Niu
Tsinghua National Laboratory for Information Science and Technology

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Email: zhaotc13@mails.tsinghua.edu.cn, sheng.zhou@tsinghua.edu.cn, guo-xy11@mails.tsinghua.edu.cn

zhaoyun12@mails.tsinghua.edu.cn, niuzhs@tsinghua.edu.cn

Abstract—With the proliferation of mobile applications, Mobile
Cloud Computing (MCC) has been proposed to help mobile
devices save energy and improve computation performance. To
further improve the quality of service (QoS) of MCC, cloud
servers can be deployed locally so that the latency is decreased.
However, the computational resource of the local cloud is gen-
erally limited. In this paper, we design a threshold-based policy
to improve the QoS of MCC by cooperation of the local cloud
and Internet cloud resources, which takes the advantages of low
latency of the local cloud and abundant computational resources
of the Internet cloud simultaneously. This policy also applies a
priority queue in terms of delay requirements of applications.
The optimal thresholds depending on the traffic load is obtained
via a proposed algorithm. Numerical results show that the QoS
can be greatly enhanced with the assistance of Internet cloud
when the local cloud is overloaded. Better QoS is achieved if the
local cloud orders tasks according to their delay requirements,
where delay-sensitive applications are executed ahead of delay-
tolerant applications. Moreover, the optimal thresholds of the
policy have a sound impact on the QoS of the system.

I. INTRODUCTION

The amount of mobile applications increased dramatically

in recent years. By April 2015, Android users have accessed

to more than 1.5 million applications [1]. This trend enhances

the Quality of Service (QoS) of mobile devices, but the energy

consumption is also increased. In fact, the plethora of appli-

cations caused heavy energy consumption, which significantly

reduces the battery life of smart phones. Remote execution is a

possible way to help smart phones save energy. By offloading

energy-intensive tasks to resource-rich servers, battery life

of mobile devices can be significantly improved [2]. Based

on Mobile Cloud Computing (MCC), some platforms are

designed, e.g., MAUI [3], CloneCloud [4].

Although remote execution is very prominent in terms of

energy saving, it brings challenges to guarantee latency. Delay

is a very important QoS requirement from mobile users [5].

However, if an application is offloaded to a remote centralized

cloud server, the delay requirement can hardly be satisfied

because of the long transmission delay over the Internet [6] [7].

Cloudlet [8] is proposed to deploy some local cloud servers, so

that delay requirement can be met. Some specific architectures

focusing on technological details are designed then, such as

FemtoCloud [9], CONCERT [10]. In the proposed architec-

ture, each local cloud serves mobile users of several nearby

cells, which indicates that local cloud should be deployed

densely with a large number. Our earlier work [11] studied

and analysed how much computational resources need to be

deployed in a cloud so that they can be used efficiently. It is

concluded that if computational resources exceeds a threshold,

the extra resources only provide marginal gain. Based on the

analysis, computational resources of each local cloud should

be deployed reasonably so as to balance the cost and QoS.

Thus, although local cloud is beneficial in terms of transmis-

sion delay, its computational resources is relatively limited. An

architecture to associate cloudlets is proposed in [12], which

takes the advantage of cloudlets cooperation to overcome

computational resource limitation of a single cloudlet. Yet

computational resource of cloudlets still has a limitation, so

that system performance might degrade when the traffic load

is high. Remote cloud has sufficient computational resources,

and it can cooperate with the local cloud to achieve better

QoS. Load sharing between the local cloud and remote cloud

is studied in [13], which is optimized in terms of average

response time and energy consumption. But each application

has a delay requirement bound, and it is not practical to

evaluate the performance of this kind of traffic by average

delay.

Internet
Local Cloud

BS

Local Cloud

Local Cloud

BS
BS

BS

BS

BS
BS

Internet Cloud

Fig. 1. A cellular network with local cloud and Internet cloud.

As application data needs to be transmitted to remote cloud

by Internet, we define remote cloud as Internet cloud. The

transmission delay of remote execution can be quite long and

the delay jitter is generally large. One simple intuition is that,

delay-sensitive applications should be executed in the local

cloud, while delay-tolerant tasks can be offloaded to Internet

cloud when traffic load is heavy. By the cooperation of local

cloud and Internet cloud, computational resources can be used

efficiently and QoS requirements can be satisfied.

We illustrate our idea in Fig. 1. Resource-constraint lo-

cal cloud is near to mobile users, while resource-abundant

Internet cloud is remotely located. Mobile users access the

local cloud through wireless communication and fronthaul

transmission, while Internet transmission is in addition to them

if users access the Internet cloud. As local cloud has limited

computational resources, some arriving tasks might need to

wait longer to be served. To enhance the QoS, we design a

scheduling policy so that delay requirements of more users

are satisfied. The policy cooperatively schedules the resources

in the local cloud and Internet cloud. When the traffic load

of the local cloud is above a certain threshold, delay-tolerant

applications have to be offloaded to the Internet cloud in

order to leave more local computational resources for delay-

sensitive applications. To further enhance the QoS, We model

the local cloud as a priority queue system. For delay-sensitive

applications, they are labeled with higher priority and will be

executed ahead of delay-tolerant applications.

The rest of the paper is organized as follows. Section

II introduces the system model and gives the problem

formulation. Section III proposes the scheduling policy and

analyses its performance. Section IV shows numerical results

to evaluate the proposed policy. The paper is concluded in

Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model is shown in Fig. 2. Mobile users offload

their applications to cloud servers. The data is firstly trans-

mitted to a scheduler which is located in the local cloud. The

scheduler decides whether to execute the application in the

local cloud or send it to the Internet cloud. The application is

then executed in one of the clouds. As soon as the execution is

completed, the result will be sent back to the scheduler, and it

is finally fed back to mobile users. In this model, wireless

transmission and fronthaul transmission between users and

the local cloud is needed no matter where to execute the

application, whose delay is considered as a small constant τ .

Scheduler

Local

Cloud

Scheduler

Tasks

Internet
Internet

Cloud

Departures

Internet

Fig. 2. System model.

Each application offloaded from mobile devices is

considered as an arriving task, and each task has a delay

constraint. The task is successfully completed if it is executed

within the constraint. We design a resource allocation policy

to optimize the success probability.

A. Tasks

Assume that there are N types of tasks with different

delay requirements. Tasks of type i arrive at the scheduler

in a Poisson process with rate λi, and they are executed by

either the local cloud or the Internet cloud. Each of them

has a system delay constraint Ti(i = 1, ..., N) which is the

delay requirement minus τ . These tasks request exponentially

distributed service time with parameter μ. Rank the priority

of these tasks according to delay requirements, and a delay

requirement vector T = (T1, T2, ..., TN) is given:

T1 ≤ T2 ≤ ... ≤ TN (1)

B. Local Cloud

Assume that there are C virtual machines working in the

local cloud. Each virtual machine can be seen as a single

server. In the queuing system, we assign different priorities to

tasks of different delay requirements, where a task of smaller

delay requirement has a higher priority. The system forms

a nonpreemptive priority queue, where tasks being executed

will not be interrupted when a higher priority task comes.

Meanwhile, the system has a finite buffer for each type of

tasks. Accordingly, the local cloud is modeled as an M/M/C
system with modified preemptive priorities. In our model,

the total delay is composed of two parts, which includes the

queuing delay and execution delay. The local cloud model is

shown in Fig. 3.

Local cloud

server 1()Tasks 1 (T1)

N

Local

Scheduler

Tasks 2 (T2)

Tasks N (TN)

Local cloud

server 2()

Local cloud

server C()

Fig. 3. Local Cloud model.

C. Internet Cloud

The mean delay of Internet transmission is assumed to be

long and so does the delay jitter. Thus, Internet cloud is by no

means a good choice in terms of delay requirement. However,

if the number of coming tasks exceeds the service capacity

of the local cloud, Internet cloud should be used to help

improve the probability that the delay requirement is met. As

the Internet cloud is abundant in computational resources, we

assume that the execution delay can be ignored compared with

the transmission delay.

Some related works model Internet transmission delay, and

we adopt the model of reference [14]. They propose that ϕ1(t)

is the router delay distribution and ϕ2(t) is the queuing delay

distribution, the Internet transmission delay distribution is

ϕ(t) = pϕ1(t) + qϕ1(t) ∗ ϕ2(t) (2)

D. Optimization Objective

The optimization objective is the probability that an arriving

task is successfully executed within its delay constraint Ti. The

constraint of the system is the limited computational resource

of the local cloud. The maximum number of servers can be

used in the local cloud is C. The objective is Psuccess(t <
Ti|C), where t indicates the time consumption. We design a

scheduling policy to optimize the objective by deciding when

and where to execute the arrival tasks.

III. POLICY DESIGNMENT AND PERFORMANCE

OPTIMIZATION

Assume that the arrival rates and service rate of all types of

tasks are given, which are λ = (λ1, ..., λN) and μ separately.

Define the vector S = (s, l1, l2, ..., lN) as the state of the

queuing system. The first parameter s denotes the number of

busy servers in the local cloud, and li(i = 1, 2, ..., N) denotes

the number of tasks of priority i waiting in the queue.

We design a threshold based policy to cooperate the local

cloud and Internet cloud, which schedules tasks according to

their delay requirements. The policy is shown as follows.

Priority-based Cooperation policy: If there is at least one

empty server, a task is executed in the local cloud as soon

as it arrives. Otherwise, the arrived task of priority i waits in

the queue of its own type. If a task departures the system,

the empty server will execute a waiting task of the highest

priority if any. The priority-based sub-queues are illustrated in

Fig. 3 with different colors. For tasks of priority i or higher, a

buffer threshold Bi is set to contain them. If the buffer Bi is

full, the coming task of priority i or higher is offloaded to the

Internet cloud. The buffer thresholds vector B = (B1, ..., BN)
is derived accordingly.

The intuition of the policy designment is explained as

follows. Firstly, tasks of higher priorities have shorter delay

requirements. Tasks of lower priorities could wait in the queue

until higher-priority tasks have been executed. Secondly, the

sojourn time distribution is determined by queue length. By

optimizing threshold Bi, the success probability of tasks can

be enhanced. Finally, if a priority-i task is the last one in

the queue and the queue length equals to the threshold, the

policy do not permit a higher-priority task to enter the queue.

Otherwise, the priority-i task may suffer from low success

probability because of a burst of higher-priority traffic.

To further evaluate the performance of our policy, we design

some classical policies for comparison, which are shown as

follows.

Local Cloud policy: The tasks are executed only in the

local cloud. The system is M/M/C with preemptive priority.

Greedy policy: The coming task chooses the better one

between the local cloud and Internet cloud so that it will have

a higher success probability.

FCFS-based Cooperation policy: Local cloud is a

M/M/C system with First Come First Serve (FCFS) queue.

The coming task is offloaded to either the local cloud or

the Internet cloud by comparing current queue length with

a threshold.

Non-buffer policy: If all local cloud servers are being used,

the coming task will be offloaded to the Internet cloud.

A. Stationary Distribution

The queuing system is a N -dimension Markov chain. We

can get stationary distribution by formulating and solving

global balance equation. Define Li =
∑i

j=1 lj and Λi =∑i
j=1 λj , ρi =

Λi

μ . For LN = 0,

(ΛN + sμ)p(s, 0, 0, ..., 0) =

(s+ 1)μp(s+ 1, 0, 0, ..., 0) + ΛNp(s− 1, 0, 0, ..., 0)
(3)

For 0 < Li < Bi,

(ΛN + Cμ)p(C, l1, l2, ..., lN) =
N∑
j=1

λjp(C, l1, ..., lj − 1, ..., lN)

+

M∑
j=1

Cμp(C, l1, ..., lj + 1, ..., lN)

(4)

Here, M is the type of tasks of the highest pri-

ority in the queue, and the queuing system state is

(C, 0, ..., 0, lM , lM+1, ..., lN).
For the maximum i satisfying Li = Bi,

(ΛN − Λi + Cμ)p(C, l1, l2, ..., lN) =
N∑
j=1

λjp(C, l1, ..., lj − 1, ..., lN)
(5)

This is a N -dimension Markov chain, and it has only one

stationary distribution.

Proof : States (s, 0, ..., 0) and states (C, 0, ..., 0) communi-

cate with each other, which is denoted as (s, 0, ..., 0) ↔
(C, 0, ..., 0). The states also have the following relations.

(C, l1, ..., li, ..., lN) ↔ (C, 0, l2, ..., li, ..., lN) (6)

(C, 0, ..., 0, li, ..., lN) ↔ (C, 0, , ..., 0, li+1, ..., lN) (7)

Thus, all states communicate with each other, which indi-

cates that the Markov chain is irreducible. The Markov chain

has a stationary distribution and no other stationary distribution

exists [15].

If N=2, the 2-dimension Markov chain is shown in Fig.

4. The states (i) which are below the dashed line represent

the number of busy servers, where queue is empty. The states

(li, lj) which are above the dashed line represent queue lengths

of different types of tasks, where all servers are busy. The

states (li, lj) whose li = B1 or li + lj = B2 indicate that

the buffer is full, and arriving tasks will be offloaded to the

Internet cloud.

0,0

0,1

1,0 ... B1-1,0

0...C-1 1

...

0,B2-B1

...

B1-1,11,1 ...

B1-1,B2-B1...1,B2-B1

0,B2-B1+1

...

0,B2

0,B2-1

1,B2-B1+1

B1,0

...

B1,1

B1,B2-B1

B1-1,B2-B1+1...

...

1,B2-1

(C-1)

1+ 2

C 2

1

1

1

1

1

1

1

1

2 2 2 2

C 2 2 2 2 2

C 2 2 2 2 2

1

1

1

1

C 2

C 2

C 2

C 2

1

1

1

1

1

1

2
2

2

2

2

1

1

1

...

1

2

C 1+ 2

1+ 2

1+ 2

s<C

s=C

Fig. 4. Markov chain for 2-priorities system.

B. Sojourn Time Distribution

System state is S = (s, l1, ..., lN). If s ≤ C, a task is served

as soon as it arrives at the queuing system. The sojourn time

equals to the service time, which is exponentially distributed.

The pdf of sojourn time is:

pst(t|S) = μeμt (t ≥ 0) (8)

If s > C, all servers are being used when a task arrives

at the queuing system. The task has to wait in the queue or

served by the Internet cloud. If the task is served by the local

cloud, it needs to wait in the queue until it can be served. The

sojourn time consists of waiting time and service time.

Assume that the priority of the arriving task is i. The

distribution of waiting time for the task w(t) is Li + 1 fold

convolution of f(t) which is the busy period of a C-server

system serving higher-than-i priority tasks [16]. The proba-

bility density function f(t) and its Laplace-Stieltjes transform

are as follow [17].

f(t) =
1

t
√
ρi−1

e−(Λi−1+μ)tI1(2t
√

Λi−1μ) (t ≥ 0) (9)

F̄ (s) =

(s+ Λi−1 + Cμ−
√

(s+ Λi−1 + Cμ)2 − 4cμΛi−1)/2Λi−1

(10)

I1 is a modified Bessel function of the first kind. Thus,

the distribution of waiting time w(t) and its Laplace-Stieltjes

transform is derived.

w(t|S) = f(t) ∗ f(t) ∗ ... ∗ f(t) (11)

W̄ (s|S) = F̄ (s)Li+1 (12)

The sojourn time distribution pst(t|S) is the convolution of

waiting time and service time.

pst(t|S) = w(t|S) ∗ μeμt (13)

Given the state S of the system, success probability is

Psuccess(t ≤ Ti|S) =
∫ Ti

0

pst(t|S)dt (14)

If the task is served by the Internet cloud, the sojourn time

distribution is modeled as an empirical distribution PI(t)
which is given in (2).

C. Success Probability

Assume that λ, μ and B are given, the success probability

of priority-i tasks is calculated as:

Psuccess(i|λ, μ,B) = P (t ≤ Ti|λ, μ,B) =∑
Lj<Bj

Pst(t ≤ Ti|S)p(s, l1, l2, ..., lN)

+
∑

Lj=Bj

PI(t ≤ Ti)p(s, l1, l2, ..., lN)

(15)

Note that the Pst(t ≤ Ti|S) in equation (15) is related to

λ, μ and B, which is given in equation (14).

The total success probability is

Psuccess(λ, μ,B) =

∑N
i=1 λiPsuccess(i|λ, μ,B)

ΛN

(16)

D. Local Optimal Thresholds

Search algorithm can be used to get the optimal thresholds

vector (B1, ..., BN), so that the success probability is maxi-

mized. But the complexity of search algorithm might be quite

high. Here, we give a low-complexity recursive algorithm to

get the local optimal thresholds, which is shown in the Al-

gorithm 1. Firstly, make (B1, ..., BN) = (0, ..., 0). Secondly,

continually increase BN by 1 until Psuccess begin to decrease,

and a local optimal BN is derived given that (B1, ..., BN−1) =
(0, ..., 0). Next, make (B0, ..., Bi−1) = (0, ..., 0). Increase Bi

by 1 each time to get optimal (Bi+1, ..., BN), and stop adding

Bi until Psuccess decreases. Repeat the previous step to get

the buffer thresholds (B1, ..., BN). This algorithm gives local

optimal thresholds, while search algorithm is optimal globally.

In the simulation scenarios, numerical results show that the

thresholds of our algorithm equal to the thresholds derived by

search algorithm.

IV. NUMERICAL RESULTS

We evaluate the proposed priority-based cooperation policy

by comparing it with other policies stated previously. In the

evaluation, two types of tasks are considered, which are delay-

sensitive tasks and delay-tolerant tasks separately. We assume

the parameters of the system as follows. Delay requirement of

Algorithm 1 Find local optimal thresholds

Input: λ = (λ1, ..., λN), μ
Output: B = (B1, ..., BN)

1: B ← (0, ..., 0)
2: B ← FINDOPTIMALTHRESHOLD(1, N,B)

3: procedure FINDOPTIMALTHRESHOLD(i, N , B)

4: for k ← i to N do
5: Bk ← Bi−1

6: end for
7: if i = N then
8: PSuccess1 ← Psuccess(λ, μ,B)
9: PSuccess2 ← PSuccess1

10: while PSuccess1 ≤ PSuccess2 do
11: BN ← BN + 1
12: PSuccess1 ← PSuccess2

13: PSuccess2 ← Psuccess(λ, μ,B)
14: end while
15: BN ← BN − 1
16: else
17: B ← FINDOPTIMALTHRESHOLD(i+ 1, N,B)

18: PSuccess1 ← Psuccess(λ, μ,B)
19: PSuccess2 ← PSuccess1

20: while PSuccess1 ≤ PSuccess2 do
21: Bi ← Bi + 1
22: B ← FINDOPTIMALTHRESHOLD(i+1, N,B)

23: PSuccess1 ← PSuccess2

24: PSuccess2 ← Psuccess(λ, μ,B)
25: end while
26: Bi ← Bi − 1
27: B ← FINDOPTIMALTHRESHOLD(i+ 1, N,B)

28: end if
29: return B
30: end procedure

delay-sensitive tasks is 50 milliseconds, and delay requirement

of delay-tolerant tasks is 300 milliseconds. The Internet delay

is modeled in (2), whose mean delay is 200 milliseconds. For

the local cloud server, its mean service time is 10 milliseconds.

Fig. 5 shows the comparison between priority-based coop-

eration policy and local cloud policy. When traffic load is

low, the local cloud has enough computational resources to

execute arriving tasks and most users can complete their tasks

within delay requirements. However, the success probability

decreases dramatically with the increasing of arrival rate. In

fact, most users have to wait in the queue when traffic load

is heavy, which leads to poor QoS. In this case, cooperation

of the local cloud and Internet cloud is quite necessary. By

offloading delay-tolerant tasks to Internet cloud, much more

mobile users can have their applications completed successful-

ly. In our model, more than 20% success probability of tasks

can be enhanced by cooperation of the local cloud and Internet

cloud when traffic load is heavy.

Fig. 6 shows the comparison between priority policy and

non-priority policies. A single user can achieve higher QoS

0 10 20 30 40 50 60 70 80 90
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Total arrival rate (s−1)

Su
cc

es
s

pr
ob

ab
ilit

y

Priority−based Cooperation policy
Local Cloud policy

Fig. 5. Success probability vs. Arrival rate for Priority-based Cooperation
policy and Local Cloud policy.

by greedy policy which maximizes his success probability.

However, optimization of a user becomes a burden for the

system, because it results in longer mean waiting time. In fact,

local optimum is by no means global optimum. The scheduling

policy needs to be designed globally so that higher success

probability for total users can be achieved. For the FCFS-

based cooperation policy, it fully utilizes the computational

resources of the local cloud and the Internet cloud and its

performance is quite good. But higher QoS can be realized by

considering priorities of tasks. Results shows that the priority

policy is better than the FCFS policy to a certain extent. In

our model, it results in a 5% success probability improvement

if the policy considers priorities of tasks. Non-buffer policy

only makes decisions according to the state of servers. It fails

to utilize the buffer to make future plans and further improve

the QoS, which results in a bad QoS performance.

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Total arrival rate (s−1)

Su
cc

es
s

pr
ob

ab
ilit

y

Priority−based Cooperation policy
FCFS−based Cooperation policy
Greedy policy
Non−buffer policy

Fig. 6. Success probability vs. Arrival rate for Priority-based Cooperation
policy and Non-Priority Cooperation policies.

Fig. 7 gives the optimal thresholds of our proposed policy.

When traffic load is low, threshold B2 is a small value. In this

condition, extra buffer is not needed and a small threshold will

achieve the optimal success probability. With the increase of

arrival rate, a larger buffer threshold is essential to hold more

tasks in the local cloud. However, when traffic load is heavy,

the buffer threshold should decrease, because the queue will

always be full and long queue length leads to large waiting

time. Threshold B1 decreases with the increase of arrival rate,

which leads to waiting time reduction of all types of tasks.

0 10 20 30 40 50 60 70 80 90
2

4

6

8

10

12

14

16

18

20

22

Total arrival rate (s−1)

O
pt

im
al

 T
hr

es
ho

ld

Threshold B1
Threshold B2

Fig. 7. Optimal Thresholds vs. Arrival rate.

V. CONCLUSION

In this article, we have improved the QoS of MCC users

by designing a scheduling scheme to realize the cooperation

between the local cloud and the Internet cloud. We firstly

classify applications according to their delay requirements,

and give higher priority to applications with shorter delay

requirements. Then, we design a threshold-based policy to

cooperatively scheduling the local cloud and the Internet

cloud, so that the QoS is dramatically improved. By optimizing

the thresholds, probability that tasks can be executed within

their delay requirements is maximized. We further give an

recursive algorithm to get the optimal thresholds with low

computation complexity. Numerical results reveal that: 1)

Limited computational resources of the local cloud greatly

influences the QoS when the traffic load is high, and Internet

cloud is needed to improve QoS. By cooperation of the local

cloud and Internet cloud, probability that a task is completed

within its delay requirement can be improved by 20%. 2) The

QoS can be further improved by 5% via a priority scheme

which executes delay-sensitive tasks ahead of delay-tolerant

tasks. 3) Optimal buffer thresholds are tightly related to the

traffic load. As the traffic load increases, a larger buffer

threshold is needed to hold more tasks. But thresholds should

decrease to guarantee a small waiting time when traffic load

is heavy.

ACKNOWLEDGMENT

This work is sponsored in part by the National Basic Re-

search Program of China (973 Program: No. 2012CB316001),

the National Science Foundation of China (NSFC) under grant

No. 61201191, No. 61322111, No. 61321061, No. 61401250,

and No. 61461136004, and Hitachi Ltd.

REFERENCES

[1] [Online]. Available: http://www.appbrain.com/stats/number-of-android-
apps

[2] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, 2013.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proc. Int. Conf. Mobile Syst., 2010, pp. 49–62.

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proc. 2011
European Conference on Computer Systems, 2011, pp. 301–314.

[5] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” IEEE Computer, no. 4, pp. 51–56,
2010.

[6] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay, “Variability in tcp round-
trip times,” in Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, 2003, pp. 279–284.

[7] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Communications of the ACM, vol. 49, no. 11, pp. 40–45, 2006.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[9] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5g heterogeneous
networks,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 45–55,
2014.

[10] J. Liu, T. Zhao, S. Zhou, Y. Cheng, and Z. Niu, “Concert: a cloud-
based architecture for next-generation cellular systems,” IEEE Wireless
Communications, vol. 21, no. 6, pp. 14–22, 2014.

[11] J. Liu, S. Zhou, J. Gong, Z. Niu, and S. Xu, “On the statistical
multiplexing gain of virtual base station pools,” in IEEE GlobeCom14,
Austin, USA, 2014.

[12] J. Rawadi, H. Artail, and H. Safa, “Providing local cloud services to mo-
bile devices with inter-cloudlet communication,” in IEEE Mediterranean
Electrotechnical Conference (MELECON), 2014.

[13] E. Gelenbe, R. Lent, and M. Douratsos, “Choosing a local or remote
cloud,” in Network Cloud Computing and Applications (NCCA), 2012
Second Symposium on, 2012.

[14] G. Hooghiemstra and P. Van Mieghem, “Delay distributions on fixed
internet paths,” Delft University of Technology, Tech. Rep., 2001.

[15] S. M.Ross, Applied Probability Models with Optimization Applications,
1970.

[16] R. H. Davis, “Waiting-time distribution of a multi-server, priority
queuing system,” Operations Research, vol. 14, no. 1, pp. 133–136,
1966.

[17] I. Adan, Course QUE: Queueing Theory, Fall 2003: The M/M/1 system,
2012.

