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Abstract—The baseband-up centralization architecture of ra-
dio access networks (C-RAN) has recently been proposed to
support efficient cooperative communications and reduce de-
ployment and operational costs. However, the massive fron-
thaul bandwidth required to aggregate baseband samples from
remote radio heads (RRHs) to the central office incurs huge
fronthauling cost, and existing baseband compression algorithms
can hardly solve this issue. In this paper, we propose a graph-
based framework to effectively reduce fronthauling cost through
properly splitting and placing baseband processing functions in
the network. Baseband transceiver structures are represented
with directed graphs, in which nodes correspond to baseband
functions, and edges to the information flows between functions.
By mapping graph weighs to computational and fronthauling
costs, we transform the problem of finding the optimum location
to place some baseband functions into the problem of finding
the optimum clustering scheme for graph nodes. We then solve
this problem using a genetic algorithm with customized fitness
function and mutation module. Simulation results show that
proper splitting and placement schemes can significantly reduce
fronthauling cost at the expense of increased computational cost.
We also find that cooperative processing structures and stringent
delay requirements will increase the possibility of centralized
placement.

[. INTRODUCTION

Recently, the number of smart devices has grown into
billions, and the wide collection of mobile applications is
increasingly interleaved with our daily lives. As a result,
next generation wireless communication systems have received
unprecedented expectations, aiming at 1000 times capacity,
100 times data rate, billions of devices, and millisecond-level
delay. To fulfill these goals, the solution envisioned so far
is a dense, cooperative [1], and heterogeneous [2] wireless
network. However, realizing such a network with the tradi-
tional, distributed architecture for radio access network (RAN)
means high capital expenditure (CAPEX) and operational
expenditure (OPEX); and cooperative communications will
be highly limited due to the bandwidth bottleneck between
distributed base stations.

The baseband-up centralization architecture, e.g. C-RAN
[3], is a promising solution to these problems. In this archi-
tecture, radio signals are first digitized at the antenna sites
by remote radio heads (RRHs), and then transported via
the so called fronthaul network to the centralized baseband

processing units (BBUs) for signal processing. The benefits
of such an architecture include reduced CAPEX and OPEX
[3], [4], efficient information exchange for cooperative com-
munications [3], and increased flexibility due to the use of
general purpose platforms (GPPs) [5]. Despite these benefits,
a major challenge for baseband-up centralization is the huge
aggregation bandwidth requirement for fronthaul network. For
a typical long-term evolution (LTE) cell configuration of 20
MHz wireless bandwidth and 8 antennas, 10 Gbps fronthaul
bandwidth is required in downlink (DL) or uplink (UL) to
transport baseband samples [6]. The demand for fronthaul
bandwidth would only be higher with even larger wireless
bandwidth and more antennas.

To cope with this problem, a number of baseband com-
pression algorithms have been proposed. Time-domain com-
pression algorithms [7] are simple and fast, but they only
provide limited compression performance (2 — 3x). Another
kind of algorithms perform compression in frequency domain,
which can achieve 20x compression rate. However, frequency-
domain methods requires a great amount of computation to
perform FFT/IFFT and thus may suffer from long delay.

Lorca and Cucala [8] propose a novel method that can
significantly reduce DL fronthaul bandwidth (30x) by relo-
cating modulation and precoding processing functions from
the central office back to remote sites. The intuition be-
hind this method can be explained with some insights into
baseband processing. In a sense, DL baseband processing
functions are designed to add artificial redundancies into
communication signals in order to combat the impairments of
wireless channels. For example, modulation turns constellation
codewords, which can be represented with only a few bits (6
bits for 64 QAM), into complex constellation samples, which
is usually digitized with tens of bits (30 bits for LTE). Other
baseband functions like channel encoding and beamforming,
also introduces other types of artificial redundancies. Because
redundancies are accumulated function-by-function along the
processing chain, baseband-up centralization actually needs to
transport the most redundant signal. In constrast, the method
in [8] no longer needs to transport the redundancies introduced
by modulation and precoding, therefore fronthaul bandwidth
can be reduced.



Data Center

From

upper
layer

‘\F'ronthaul Network

Fig. 1. Flexible splitting and placement of baseband functions.

Nevertheless, the above method does not consider the cost
for accommodating additional baseband functions (compu-
tational cost) at remote sites. In reality, computational cost
can become a major constraint at remote sites due to pow-
er consumption and form factor considerations. Also, some
wireless protocols have stringent real-time requirements for
processing baseband tasks. For example, the processing of LTE
radio subframes should be completed within 3 ms for timely
hybrid automatic retransmission request (HARQ). Hence, the
influence on processing delay should also be considered. For
these reason, we propose in [9] to flexibly split and place
baseband functions in the network based on the cost profile and
delay requirements of different applications. But an analytical
framework for deciding the optimum splitting and placement
scheme is still needed.

In this paper, we present a graph-based framework for
baseband function splitting and placement. We first translate
baseband transceiver structures into directed graphs so that the
splitting and placement problems can be formulated as graph-
clustering problems (as illustrated in Fig. 1). We then propose
a genetic algorithm with customized fitness function and
mutation module for the graph-clustering problem. Simulation
results show that the proposed algorithm can effectively reduce
fronthauling cost. An anatomy of these results also reveals
that cooperative structures and stringent delay constraints will
result in more centralized function placement.

The rest of the paper is organized as follows. In section
II, we represent baseband processing structures using direct-
ed graph and formulate the baseband function splitting and
placement problem as a graph-clustering problem. In section

III, we introduce the proposed customized genetic algorithm.
Simulation results are presented and discussed in section IV
and the paper is concluded in section V.

II. MODEL FORMULATION

In this section, we present the proposed graph-based frame-
work. For better understanding, we also present a concrete
example for mapping baseband function splitting problems
into graph-clustering problems.

A. Baseband processing structures and directed graphs

We represent a baseband processing structure with a directed
graph G = (V, E). Each node v € V stands for an atomic
baseband processing function such as FFT or MIMO detection,
and each directed link e € E represent the logical connectivity
between the nodes it connects. Here we assume nodes and
edges are indexed using with integer values. Each node is
assigned with a node weight according to the node complexity
function v : V' — R, which indicates the computational
complexity of this processing node. And each link is assigned
with a link weight by the link bandwidth function w : £ — R,
which represents the amount of information that has to be
exchanged between the processing node it connects. Note
some of the nodes are sources (no inbound links) or sinks
(no outbound links). Each distinct path p € P from a source
to a sink represents a complete chain of baseband processing
functions. Note there may be multiple paths between a pair of
source and sink due to the parallel processing of channels for
different users.

The graph formulated in this way may contain cycles. The
reason is that there may be mutual information exchange
between baseband functions in cooperative systems such as
cooperative multipoint (CoMP) processing or multi-user MI-
MO. These cycles are important features of the whole system
and have significant influence on the choice of splitting and
placement. However, we do assert that there are no self-cycles,
which may appear due to inappropriate abstraction of iterative
processing function. The information flow of iterative process-
ing functions should be embedded in the atomic baseband
processing functions to avoid self-cycles.

B. Function Splitting and graph clustering

With this representation, we can express function splitting
and placement as graph clustering schemes ¢: V' — Z, which
assign nodes to a collection of clusters. Note that in our model,
clusters have explicit physical meanings. Different clusters
correspond to different physical locations (e.g. remote sites and
central office), and the nodes in the same cluster correspond
to baseband processing functions that are placed at the same
physical location. The links between clusters correspond to the
information flow to be transported by the fronthaul network.

The study of graph clustering is concerned with grouping
nodes in order to optimize some cost/gain metric. The classic
goal is to group nodes that are “close to” or “similar to” each
other [10]. We employ different goals in our formulation to
address the special concerns of baseband function splitting



and placement. The goals reflect the computational cost for
accommodating nodes at some location and the fronthauling
cost for transporting data between different locations using
fronthaul networks.

Specifically, we define a pair of cost metrics. The first metric
is computational cost c.(¢; §), where i is the index of a cluster,
and ¢ is the clustering scheme under consideration. The com-
putational cost is to reflect the cost of implementing baseband
processing functions at a physical location and should thus
be a function of the total node complexity inside the cluster.
Also, because computational cost often differs in different
locations in real world!, clusters are allowed to have different
cost profiles. The second metric is fronthauling cost ¢ (4, j; §),
where 4 and j are the index of two clusters, and £ is the
clustering scheme. Fronthauling cost is to reflect the bandwidth
required to transport information between different physical
locations. As a result, it should be a function of the total
edge weights between clusters. As we have explained from the
perspective of redundacy, computational cost and fronthauling
cost are in generals contradiction goals to optimize. Thus,
different clustering scheme will result in different tradeoffs
between computational and fronthauling costs. For this reason,
we aim to characterize the tradeoff between computational cost
and fronthauling cost.

Another important feature of our model is the path de-
lay constraint, which is imposed to guarantee the real-time
processing of communication signals. We assume that each
node on a path will impose an additional delay d(v,p;¢)
to this path, where v is the index of the node and p is the
path under consideration. This delay function captures the
processing and buffering latency of baseband tasks. Any valid
clustering scheme should guarantee that the total delay of a
path is smaller than a predefined threshold D(p): d(p;&) =

> vep v, p;€) < D(p).

C. Example

The baseband processing structure used in our simulation
is shown in Fig. 2. We use two such baseband processing
structures to represent two cells. Note this structure is just a
simplification of real-life physical layer baseband structure.
We only include some of the most important functions in
the DL/UL chains. Other functions such as resource map-
ping/demapping, channel estimation, and scrambling are ig-
nored. Also, the parameters such as node complexity and
link weight are approximations to real-world values. With this
simplification, we are able to show the essence of flexible
splitting and placement of baseband functions. Still, fine-
grained tuning is required if the proposed model is applied
in practice.

Processing nodes are labeled based on their types, the
logical cells they belong to, and the sub-chaisn they reside
in. For example, the node MIMOtx.1.2 is a MIMO transmitter
which resides in the second DL processing-chain (two in total)

IFor example, it is more expensive to accommodate computation at remote
sites than at central office due to form factor, electricity, and site rental costs.
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Fig. 2. A simplified baseband processing architecture

TABLE 1
NODE WEIGHTS WITH RESPECT TO NODE TYPE.

Index 1 2 3 4 5 6
Type radioTX | radioRX fft ifft MIMOtx | MIMOrx
Weight 0 0 1 1 0.5 0.5
Index 7 8 9 10 11 12
Type mod demod code | decode | sourceDL sinkUL
Weight 0.1 0.1 0.1 2 0 0

of the first cell. Each node is assigned with a weight based
on its type to reflect its computational complexity. The weight
for each type is listed in Table I. The weight value is selected
based on experimental results in [5].

The weights of links are also shown in Fig. 2. The mag-
nitudes of link weights reflect the information flow between
processing nodes. For example, each MIMOrx node gets a link
from the FFT node with a weight of 0.45 because we assume
the overhead of cyclic prefix and control signaling is 10%, and
the information after CP removal is equally divided between
the two processing-chains. Also, note that the link weight
is greatly increased/reduced after modulation/demodulation
because we assume each 30 bit complex baseband sample
is transformed from/into a 4 bit constellation codework (16-
QAM). In case of CoMP, we add mutual links between neigh-
bouring MIMO modules in a cyclic fashion (e.g. MIMOtx.n.2
- MIMOtx.(n+1).2 and MIMOrx.N.1 - MIMOrx.1.1). The
weight of CoMP links are equal to the links between MIMO
and FFT.

We assume” computational and fronthauling cost functions
to have exponential forms as shown in Table II and Table
III. The computational cost at central office is zero because
provisioning computational resources in central offices is less

2

2The assumptions we make for cost and delay are just for illustration pur-
pose and only reflect the most basic properties of real systems. More thorough
evaluation may be required in order to get a more realistic assumption.



TABLE I
COMPUTATIONAL COST FUNCTION cc(¢, &) USED IN SIMULATION.

Cell site Central office
225(0):i ~(2) 0
TABLE IIT

FRONTHAULING COST FUNCTION ¢y (%, j, £) USED IN SIMULATION.

Clusters Cost
within cell site 0
within central office 0

between cell sites i and j 42c(e)=(ij) @ (@)

between cell site and central office | 22-&(e)=(i.j) “(¢)

TABLE IV
DELAY FUNCTION d(p; §).

cell site central office
ZUEP (v(v) Zg(w)zg(u) 7(v)) 0

expensive. The fronthauling cost within cell sites or the data
center is zero because internal information exchange does not
need to use fronthaul network. The fronthauling cost between
cell sites is higher than the cost between a cell site and the
central office because fronthaul networks are usually optimized
for centralization. Also, we assume baseband tasks in a cluster
equally divides the computational resource, thus the delay of
a processing functions can be represented with the product of
the corresponding node weight and the total node weight in
the cluster (Table IV).

III. GRAPH-BASED GENETIC ALGORITHM

The clustering scheme can also be represented with a
discrete valued vector § € ZN, where N is the total number
of baseband processing functions. The k-th entry of £ is the
cluster index for the k-th node. With this representation, the
cost functions are parameterized by £ and the graph cluster-
ing problem is transformed into a 2-objective combinatorial
optimization problem:

min z Cc(i; f)v Z Z Cf(ivj; 5))
¢ T 7 (1)
st d(pi§) = 3, d(v,p:i§) < D(p).
It is difficult to give a general analytical solution to such
a problem. So we turn to genetic algorithm (GA) to find
sub-optimal solutions. The basic building blocks of GA are
selection, crossover, and mutation. A typical GA session is
initialized with a population carrying a collection of genes.
The algorithm then iteratively loop through the three basic
building blocks until solution converges or some termination
conditions are met. From the perspective of computation, GA
can also be seen as embedded parallel algorithms which search
for the “good” solution by simultaneously experimenting with
multiple solutions. Although GA can be applied to many
types of problems, its performance will become satisfactory

only after some customization. For this reason, we designed
a customized GA to solve the graph-clustering problems
described above.

A. Natural encoding and cluster seeding

A key problem with GA is how to represent solutions
as combinations of genes (chromosome). This process is
also called encoding. Good encoding should make it easy
to produce legitimate offspring individuals through crossover
and mutation. Here we directly use the clustering vector &
for encoding. The advantage of this encoding scheme should
be obvious when we present our crossover and mutation
functions. Notice that we keep some nodes in a fixed cluster to
reflect the fact that some functions can only be place at specific
locations. As an example for this, radio transmitter or receiver
have to be placed at distributed cell sites since assigning them
to other physical locations does not make sense. Hereafter we
refer to these nodes as “seed nodes”. We name them in this
way because the whole clustering scheme is generated based
on the initial cluster assignments of seed nodes.

B. Linearly combined fitness function

Another important aspect is how to evaluate solutions with
a fitness function. This problem is complicated because we
have two (possibly contradicting) optimization objectives. To
achieve different tradeoffs between these costs, we linearly
combine computational and fronthauling cost to form a single
cost function. Also, we have to incorporate the path delay
constraints. Yet explicitly examining whether a solution vio-
lates these constrains makes crossover and mutation difficult.
Hence we implicitly incorporate the path delay constraints as a
“penalty function”, which will significantly degrade the fitness
of a solution if the path delay constraint is violated. Summing
up, the overall fitness function is as follows:

F(&;a,p) =azcc<z‘;5> +(1-a) ZZcf(z',j;@)

2
+8> (dp;:€) — D(p)™,

where 0 < « < 1 is the tradeoff coefficient, 3 > 1 is
the penalty coefficient, and (-)* is the non-negative clipping
function.

C. Dispersive crossover

The crossover function we choose is dispersive crossover.
This crossover function selectes the genes of an offspring
from its parents with equal probability. With natural encoding,
we are guaranteed that the offspring of legitimate parents is
naturally legitimate.

D. Graph-based mutation

Mutation function helps the population’s chromosomes es-
cape from local minima. Based on the structure of our prob-
lem, we tailored a customized mutation function called graph-
based mutation. We first define the connection matrix C, the
entries of which take on values of either 1 or 0. C(i,j) = 1



TABLE V
ALGORITHM PARAMETERS.

Parameter Value / Type
Population size 20
Initialization Graph-based random initialization
Seeds RadioTx, RadioRx, SourceDL, SinkUL

Selection Rolling-wheel selection
Crossover Dispersive crossover
Mutation Graph-based mutation (Prob. = 0.4)

Delay penalty factor 10

if and only if node ¢ and node j are connected. Using C,
we can define the Allowed Mutation Set as A(i) = {£(j) |
C(i,j) = 1,7 is seed}, which gives all the clusters that a
node ¢ is currently connected with. In summary, graph-based
mutation can be described as follows: we randomly change
the value of an individual’s chromosome at position i to a
value selected from A(%). In this way, we can avoid “bad”
mutations because placing a node to a unconnected cluster
will only increase the total cost.

IV. SIMULATION RESULTS

In this section, we apply the customized genetic algorithm
and discuss simulation results. We use the parameters of the
example in II-C in our simulation. To avoid small dynamic
range of «, we rescale the computational and fronthauling
cost with respect to their maximum value. Other important
parameters of GA are shown in Table V. Note that the
initialization function is also graph-based, i.e. we intialize
nodes to the clusters that have connected seeds.

A. Tradeoff between computation and fronthauling costs

Next we show how the proposed algorithm can achieve
different tradeoffs between computational and fronthauling
costs by varying parameter «. Fig. 3 shows the average (over
10 simulation runs) computational and fronthauling costs using
a € [0.01,0.3]%. The tradeoff between these two costs can
be clearly observed: when « increases, computational cost is
reduced while fronthauling cost is increased. To understand
how this tradeoff is possible, we show the corresponding
clustering schemes in Fig. 4. The x-axis indicates the node
indexes, while the y-axis indicates the probability that a certain
type of node is distributed at cell sites. Note that we do not
show radioTX, radioRX, sourceDL, and sinkUL because they
are seed nodes and have deterministic cluster index. As «
increases (color becomes warmer), the computational cost of
placing processing functions at remote sites also increases. As
a result, more nodes are centralized to the central office to save
computational resources at the expense of increased fronthaul-
ing cost. Also notice that, no matter what value « takes on,
the decode nodes are always centralized. This is because these
nodes has very high computational complexity, the schemes

3The values of « is squeezed into a relatively small region [0.01, 0.3] since
the average magnitude of total computational cost is much larger than that of
total fronthauling cost.
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Fig. 4. Clustering schemes under different o, D(p) = 30.

which place them at remote sites has large delay penalty and
is prohibited. This phenomenon provides an intuitive guideline
to centralize computation-intensive functions.

B. Influence of cooperative structures

The presence of cooperative processing structures has great
influence on the outcomes of our algorithm. Here we compare
the simulation results of baseband structures with and without
CoMP. The clustering statistics (averaged over 10 simulation
runs) are shown in Fig. 5. As can be seen, more baseband
function are centralized under the presence of CoOMP compared
with non-CoMP scenario. The reason is that, cooperating
MIMO functions have large interconnection bandwidth re-
quirements, but the fronthauling cost between distributed cell
sites is high. Distributed placement of CoMP modules will
incur high fronthauling cost and should thus be avoided. In
real networks, not all resource blocks are scheduled for CoMP
operation. In that case, we can combine the results of CoMP
and non-CoMP cases to save fronthaul bandwidth. Specifically,
we can centralize only cooperating MIMO functions, and
leave other MIMO funcitons at cell sites. In this way, the
links between cell sites and central office will have less total
bandwidth.
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C. Influence of delay constraints

We also investigate the influence of delay constraint. In Fig.
6, we show the average (over 10 simulation runs) computation-
al and fronthauling cost under delay thresholds ranging from
1 to 20. As can be observed in this figure, different delay
threshold will result in different tradeoff. Smaller threshold
values make distributed placement prone to higher delay penal-
ty, thus the resulting clustering scheme favors centralization
and have higher fronthauling cost. In contrast, we can place
more functions at remote sites when the delay bounds get
looser.

V. CONCLUSION

In this paper, we present a graph-based framework for
analyzing baseband function splitting and placement problems
in C-RAN. We re-express baseband processing structures
with a graph model, and transform splitting and placement
strategies into graph-clustering schemes. To solve the desired
tradeoffs between computational and fronthauling costs, we
present a genetic algorithm with customized fitness function
and mutation module. Simulation results show that we can

achieve arbitrary cost tradeoffs by varying algorithm param-
eter. The investigation on CoMP and delay constraint also
give important implications for function splitting in realistic
systems. As a future work, we plan to apply the proposed
framework to other baseband structures and investigate the
cost tradeoff characteristics of these structures. Also, we plan
to further tune the graph and algorithm parameters according
to realistic implementations so that the results can be more
practical.
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