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Abstract—It is well known that the performance of frequency-
division-duplex (FDD) massive MIMO systems with i.i.d. channels
is disappointing compared with that of time-division-duplex
(TDD) systems, due to the prohibitively large overhead for
acquiring channel state information at the transmitter (CSIT).
In this paper, we investigate the achievable rates of FDD massive
MIMO systems with spatially correlated channels, considering the
CSIT acquisition dimensionality loss, the imperfection of CSIT
and the regularized-zero-forcing linear precoder. The achiev-
able rates are optimized by judiciously designing the downlink
channel training sequences and user CSIT feedback codebooks,
exploiting the multiuser spatial channel correlation. We compare
our achievable rates with TDD massive MIMO systems, i.i.d.
FDD systems, and the joint spatial division and multiplexing
(JSDM) scheme, by deriving the deterministic equivalents of the
achievable rates, based on the one-ring model and the Laplacian
model. It is shown that, based on the proposed eigenspace
channel estimation schemes, the rate-gap between FDD systems
and TDD systems is significantly narrowed, even approached
under moderate number of base station antennas. Compared
to the JSDM scheme, our proposal achieves dimensionality-
reduction channel estimation without channel pre-projection,
and higher throughput for moderate number of antennas and
moderate to large channel coherence block length, though at
higher computational complexity.

Index Terms—Massive MIMO systems, Frequency-division-
duplex, Spatial channel correlation, Training sequences design,
Feedback codebook design.

I. INTRODUCTION

Scaling-up multiple-input-multiple-output (MIMO) sys-
tems, thus exploiting the spatial degree-of-freedom (DoF),
plays a pivotal role in boosting the capacity of next gener-
ation wireless communication systems. In cellular systems, it
is desirable to deploy a large number of antennas at base
stations (BSs) [1], resulting in what is referred to as the
massive MIMO system. Such designs have several advantages,
including significant improvements of spectral efficiency and
radiated energy efficiency [2], immunity to small-scale channel
fading due to the channel hardening effect, simplification of
the media-access-control (MAC) layer design, etc.

Striving to reap the dramatic throughput gain of massive
MIMO systems, it is found that such capacity improvements
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rely heavily on the availability of channel state information
at the transmitter (CSIT). Without CSIT, e.g., when the user
channels are identically distributed and are i.i.d. (independent
identically distributed) in time and frequency, the total DoF
reduces to one [3].1 In practice, a pilot-assisted CSIT acquisi-
tion approach is widely adopted, where the BS first broadcasts
downlink channel training sequences, and then listens to the
channel feedback from the users. This is the case for the
frequency-division-duplex (FDD) system or the uncalibrated
time-division-duplex (TDD) system.2 For the calibrated TDD
system, the channel reciprocity is exploited to allow the BS to
obtain the CSIT through uplink channel training [5]. Assuming
the channel coefficients are i.i.d. for different users and BS
antennas, the CSIT acquisition overhead, which leads to a
dimensionality loss of the time-frequency resource, scales
with the number of BS antennas for FDD systems, and the
number of users for TDD systems, respectively. As we scale
up the number of BS antennas, the overhead will become
prohibitively large for the FDD system. Therefore, it is com-
monly considered that the TDD mode is the better, if not the
only, choice for massive MIMO systems. Nonetheless, since
currently deployed cellular systems are dominantly FDD, and
many frequency bands are assigned explicitly for use in FDD,
it is of great interest to design schemes that realize the massive
MIMO gains with an FDD mode.

Given the fact that the dimensionality loss due to CSIT
acquisition overhead is devastating with closed-loop channel
estimation in FDD and uncalibrated TDD systems, and that
the system performance without CSIT is unacceptably poor,
it is natural to pose the question whether there exists other
information that can be estimated at a much lower cost, while
accomplishing the same task as the CSIT. To this end, it
is found that the second order channel statistics, specifically
the channel correlation matrices (CCMs) of the channel co-
efficients, are of tremendous help [6]–[10]. Compared with
the instantaneous CSIT realizations, the CCMs, which are
determined by user-locations and large-scale fading, vary at
a much slower time scale, e.g., seconds to tens of seconds in
cellular systems. Therefore, their estimation cost is drastically
lower than instantaneous CSIT. In the mean time, recent

1In such condition it has been shown that even when the CSIT is known
within a mean-square error that does not decrease with SNR, the DoF
collapses to one [4].

2Since in practice TDD reciprocity is quite difficult to obtain, which
requires reciprocity calibration of the transmit and receive radio frequency
chains. In fact, the only current system that uses MU-MIMO, which is
802.11ac, uses explicit polling of the users through downlink pilots, and
explicit quantized closed-loop feedback from the users, even though it is a
TDD system.
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work shows the CCMs can be leveraged, in many ways, to
facilitate FDD massive MIMO transmission. While the optimal
transmission scheme with the aid of CCMs is still unclear,
significant rate gain can be expected [7].

A large body of work has been done studying TDD massive
MIMO systems. The seminal work in [1] first proposes to
deploy BS antennas with a number much larger than the
number of users, eliminating the impact of small-scale channel
fading and uncorrelated noise due to the channel hardening
effect, while only the inter-cell interference remains due to
pilot contamination. In [2], the authors show that in addition
to the spectral efficiency improvement, the massive MIMO
system increases the radiated energy efficiency by a factor
of M , where M is the number of BS antennas, or

√
M in

the presence of imperfect channel estimation. Recent work
in [11] further shows the pilot-contamination problem is not
inherent. Several other issues are also studied extensively, such
as downlink precoding, detection, hardware impairment, etc.
[12]–[14]

For FDD massive MIMO systems, the research can be
categorized into three directions: Compressive-sensing-based,
temporal-correlation-based and spatial-correlation-based. In
[15] and references therein, the authors exploit the sparsity in
massive MIMO channel matrix due to limited number of scat-
terers around the BS, using a compressive sensing approach.
Moreover, the time correlation of the channels is leveraged
to reduce the CSIT overhead, e.g., [16]–[18] and references
therein, where a trellis-code based quantization codebooks are
leveraged to decrease the CSIT estimation overhead in [16]
[17] and a memory-based channel training sequence design is
presented in [18]. The other direction is exploiting the spatial
correlation of channel coefficients, pioneered by the work in
[7] and extended in [8]–[10], [19], which propose the joint
spatial division and multiplexing (JSDM) scheme. Based on
the JSDM scheme, the users are divided into groups based on
their CCMs, and a two-stage precoding is performed, namely
the pre-beamforming and the beamforming, which utilizes the
CCMs to counteract the inter-group-interference (IGI) and the
instantaneous CSIT to manage the interference inside each
group, respectively.

The current work endeavors to optimize the achievable rates
of FDD massive MIMO systems. Specifically, we propose
eigenspace channel estimation methods to improve the system
achievable rates, for the case of spatially correlated channels.
The main contributions of this paper include:
• The low-rank covariance matrices of the channels are

exploited in order to design efficient channel training
and feedback schemes, which enable dimensionality re-
duced channel estimation, e.g., it may suffice to train
the downlink broadcast channel (BC) with pilots less
than the number of BS antennas. In fact, the proposed
channel training and feedback schemes can be seen as
an alternative to the pre-projection and effective channel
approach in JSDM. We derive deterministic equivalents
of the achievable rates for our schemes with a regularized-
zero-forcing (RZF) precoder, considering distinct CCMs
of different users, the dimensionality loss due to chan-
nel training and feedback processes, and the imperfec-

tion of channel estimations. The proposed approach re-
quires minimal modifications of the widely-adopted pilot-
assisted scheme, thus making it desirable to implement
in practice.

• The optimal channel training sequences with distinct
CCMs for different users are studied for the first time.
We propose a heuristic iterative algorithm to find the
optimized training sequences, within the heuristics of the
algorithm, based on maximizing the mutual information
between the channel coefficients and the received channel
training signals. The training sequences found by the
algorithm are shown to improve the system achievable
rates substantially, compared with the training sequences
optimized for the i.i.d. case.

• The Karhunen-Loeve (KL) transform followed by entropy
coded scalar quantization (SQ) with reverse water filling
bit-loading for the feedback codebook design (KLSQ) is
proposed. We compare its performance with two vector
quantization (VQ) methods designed for the spatially
correlated channel case. It is shown that the KLSQ is a
simple way to approach the optimal VQ performance for
correlated Gaussian channel vectors. The simplicity is due
to the fact that it is only SQ followed by Huffman entropy
coding. Therefore, it is of very low complexity for real
time implementation, which justifies and motivates its
use.

• Comprehensive numerical results are given to evaluate
the performance. We consider the one-ring channel model
and the Laplacian angular spectrum channel model, and
compare our achievable sum rate with the TDD system
and the i.i.d. FDD system under various system parame-
ters. Significant rate gains are obtained by our proposed
channel estimation scheme in spatially correlated chan-
nels. Furthermore, in comparison with the JSDM scheme,
it is shown that the achievable sum rate with our proposal
is better in most scenarios, except when the channel
coherence block length is very small and the users are
well separated in the angular domain.

The remainder of the paper is organized as follows. In
Section II, the system model is characterized. In Section
III, we specify the proposed eigenspace channel training and
feedback schemes, and derive the achievable rates. In Section
IV, we derive the deterministic equivalents of the achievable
rates. Section V gives the simulation results, including the
comparison with TDD and i.i.d. FDD systems, and the JSDM
scheme, under various system parameters. Finally, in Section
VI, we conclude our work.

Notations : Throughout the paper, we use boldface upper-
case letters, boldface lowercase letters and lowercase letters to
designate matrices, column vectors and scalars, respectively.
X† denotes the complex conjugate transpose of matrix X .
X(:, i) denotes the i-th column of X . xi denotes the i-th
element of vector x. diag[x1, x2, ..., xn] denotes a diagonal
matrix with x1, x2, ..., xn on its diagonal. det(X) and tr(X)
denote the determinant and the trace of matrixX , respectively.
Denote by E(·) as the expectation operation. Denote by IN
as the N dimensional identity matrix. CN (µ,Σ) denotes



3

circularly symmetric complex Gaussian distribution with mean
µ and covariance matrix Σ. The logarithm log(x) denotes
the binary logarithm. We use Cov(·) to denote the covariance
matrix of a random vector.

II. SYSTEM MODEL

We consider a downlink BC, where an M -antenna BS serves
N single-antenna users. The receive signal of the n-th user is
expressed as

yn = h†nWs+ nn, (1)

where s ∈ CN is the data symbols transmitted to the
users, x = Ws denotes the precoded downlink signals,
W ∈ CM×N denotes the precoding matrix, hn is the channel
vector of user-n, and y ∈ CN are the received signals of users.
The downlink total transmit power constraint is

tr
{
E[Wss†W †]

}
≤ P, (2)

and n ∼ CN (0, IN ) is the Gaussian distributed uncorrelated
noise.

A. Spatially Correlated Channel Matrix

Define the compound downlink channel matrix H =
[h1,h2, ...,hN ]

†, where hn ∼ CN (0,Rn). The CCM of user
n is

Rn = E
[
hnh

†
n

]
, (3)

where by the Karhunen-Loeve representation,

hn = R
1
2
nzn, (4)

where zn ∼ CN (0, IM ). It is assumed that the channel vectors
of users are mutually independent, since users are usually well
separated. Denote the singular-value-decomposition (SVD) of
the CCM as Rn = UnΣnU

†
n, wherein Un is an M × M

orthogonal matrix and Σn = diag[λ
(n)
1 , λ

(n)
2 , ..., λ

(n)
M ].

B. Dominant Eigenspace Representation of CCM

Let us define the order-rn dominant eigenspace representa-
tion of Rn (rn-DER) as

R(rn)
n = U (rn)

n Σ(rn)
n (U (rn)

n )†, (5)

where Σ
(rn)
n ∈ Crn×rn contains the rn dominant singular

values with 1 ≤ rn ≤ M , and U (rn)
n ∈ CM×rn denotes the

corresponding rn eigenvectors of Rn. The order-rn channel
vector approximation (rn-CVA) is

h(rn)
n = U (rn)

n (Σ(rn)
n )

1
2 z(rn)

n , (6)

where z(rn)
n ∼ CN (0, Irn). And let

hn = h(rn)
n + e(rn)

n , (7)

where e(rn)
n denotes the error introduced by only considering

the dominant rn singular values, which, therefore, can be
represented as

e(rn)
n = Ū (rn)

n (Σ̄(rn)
n )

1
2 z̄(rn)

n , (8)

where Ū (rn)
n ∈ CM×(M−rn) denotes the remaining M − rn

eigenvectors of Rn, and Σ̄
(rn)
n ∈ C(M−rn)×(M−rn) contains

the remaining M − rn non-dominant singular values. The
approximation, namely the rn-DER, which only accounts for
the dominant rn singular values of Rn is leveraged to improve
the CSIT feedback efficiency, which is discussed in details in
Section III-B.

Assumptions : Throughout the paper, we assume the BS
has perfect knowledge of the CCMs of all users, i.e., Rn,∀n,
and the users know their respective CCMs. In practice, the
BS can obtain the downlink CCMs by direct transformation
from the uplink CCMs without using any training symbols
[20]. In addition, we assume the receive and transmit antennas
are uncorrelated [21], and we only consider the transmit
correlation since we assume single-antenna users [22].

We adopt the block fading channel model, where the chan-
nel is constant for T channel uses measured on the time-
frequency plane, i.e., in complex dimensions, and evolves
independently to another block. The channel coherence block
length T is a dimensionality, which is given by the product
of channel coherence time and channel coherence bandwidth
in an orthogonal frequency-division multiplexing (OFDM)
system, on the time-frequency plane. In Long-Term Evolution
(LTE) systems, a resource block is a tile of 14 OFDM symbols
in time multiplied by 12 subcarriers in frequency, for a total
of T = 168 complex symbols [23], over which the channel is
constant (within the time and frequency selectivity for which
the system is designed).

III. FDD MASSIVE MIMO ACHIEVABLE RATES

In this section, we will specify the rate-achieving trans-
mission scheme proposed in this work. The structure of the
transmission strategy is identical with the widely adopted
pilot-assisted FDD MU-MIMO system, which encompasses
three steps:
• Downlink channel training.
• Uplink CSIT feedback.
• Data transmission.
The rate improvement stems from optimizing the channel

training sequences and the CSIT feedback codebooks under
the spatially correlated channels, thus requiring minimum
modifications to current systems. In what follows, we will
investigate the aforementioned steps in order, namely the
channel training sequences, feedback codebooks, and derive
the achievable rates on account of the dimensionality loss
and imperfection of channel estimations with the RZF linear
precoder.

A. Optimized Downlink Training with Per-User CCM

The signal model of the channel training phase is expressed
as

Yτ = HXτ +Nτ ,

tr
[
XτX

†
τ

]
≤ τP, (9)

where Xτ is an M × τ training signal matrix, containing the
training sequences and is known to the BS and the users. τ
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is the training length, and Yτ = [yτ,1,yτ,2, ...,yτ,N ]
† is the

corresponding channel output observed by the user, disturbed
by Gaussian noise Nτ with i.i.d. unit-variance entries. The
n-th user observes

y†τ,n = h†nXτ + n†τ,n, (10)

and applies the minimum-mean-square-error (MMSE) estima-
tion [24, Section 19.5]

ĥn = RnXτ (X†τRnXτ + Iτ )−1yτ,n. (11)

Applying the MMSE decomposition, the user channel hn and
the covariance matrix of the channel estimation error due to
imperfect channel training are expressed as [25]

hn = ĥn + ên,

Cên = Cov(hn)− Cov(ĥn)

= Rn −RnXτ (X†τRnXτ + Iτ )−1X†τRn

= (R−1
n +XτX

†
τ )−1, (12)

respectively. The last equation in (12) follows from the matrix
inversion lemma3. The total mean-square error (MSE) is

MSE =

N∑
n=1

tr [Cên ] . (13)

Notice that by assumption Rn is the CCM, thus it may be
rank-deficient and not invertible. Nonetheless, let R̄n = Rn+
ε∗IM such that ε∗ is small but R̄n is invertible. Then (12)
holds true if we substitute R̄n for Rn. Then we can let ε∗ → 0
due to the continuity of the function involved.

In [26], the optimal training sequences where users have
identical CCMs are given, in the sense of minimizing the MSE
or the mutual information between the channel coefficients
and received signals conditioned on the transmitted training
signals. However, to the best of our knowledge, the optimal
training sequences under the per-user CCMs is still unknown,
because multiple users share the same downlink training
sequences, and thus the training sequences can no longer
match one specific CCM, as in the case where user CCMs are
identical. In what follows, we develop an iterative algorithm
to find the optimized training sequences, within the heuristics
of the algorithm, in terms of maximizing the conditional
mutual information (CMI) between the channel vector and the
received signal. The optimization problem, given the training
length τ and total transmit power P is expressed as,4

maximize:
N∑
n=1

log det
(
I +X†τRnXτ

)
s.t. tr

[
XτX

†
τ

]
≤ τP, (14)

and we have the following theorem.

3The matrix inversion lemma states (A + UCV )−1 = A−1 −
A−1U

(
C−1 + V A−1U

)−1
V A−1, where A, U , C, V are all matrices

with correct sizes.
4Notice that (14) is based on the long-term statistics, i.e., CCMs, instead

of directly on instantaneous CSIT. We stress that it is impossible to base the
optimization of the training sequences on any knowledge of instantaneous
CSIT, which varies in time, due to causality.

Theorem 1: The training sequences that maximize the CMI
satisfy the following condition

N∑
n=1

[
RnXopt

(
Iτ +X†optRnXopt

)−1
]

= λXopt, (15)

where λ ≥ 0 is a constant chosen to satisfy the power
constraint.

Proof: The proof is straightforward by deriving the
Karush-Kuhn-Tucker (KKT) conditions of the Lagrangian dual
problem [27] of (14).

Remark 1: Unfortunately, in general, the problem in (14) is
not a convex problem. Consider the special case where N = 1
and R1 is rank-deficient, then any Xτ satisfying

Xτ = [x0,x0, , ...,x0] , (16)

where x0 is the singular vector of R1 corresponding to the
singular value of 0, is a solution of (15) when λ = 0.
Therefore, there are multiple sequences that satisfy the KKT
condition in (15), and clearly, none of which satisfying (16)
is the optimal solution, since by plugging (16) into (14), the
objective is zero. To obtain an improved performance, we
develop a heuristic iterative algorithm which is based on the
condition in (15) to find the optimized training sequences.
Based on the simulation results, the algorithm performs fairly
well and converges fast.

Remark 2: Observing the condition in (15), one can imme-
diately infer that when N = 1, the optimal training sequences
developed in [26] based on identical CCMs, which contain the
singular vectors of the CCM with optimal power allocation
given by the water-filling solution, satisfy (15), i.e., the one
with identical CCMs is a special case for our problem.

Remark 3: The reason that we set the objective to be
maximizing the CMI, rather than minimizing the total MSE,
is that the algorithm based on minimizing the MSE does
not converge. This non-convergent behavior is the result of
the ill-conditioned matrices involved in computing the KKT
conditions in the MSE problem. Consider the derivative of the
MSE

∂MSE
∂Xτ

= −2

N∑
n=1

(
R−1
n +XτX

†
τ

)−2
Xτ . (17)

The matrix
(
R−1
n +XτX

†
τ

)
is often ill-conditioned, when

Rn is rank-deficient, whereas in the CMI problem, the ma-
trices involved are all well-conditioned. Moreover, based on
[28], the MMSE and the mutual information have very strong
relationships, and the numerical results show that the obtained
training sequences have very good MSE performance.

The iterative algorithm, which aims to find the optimum
training sequences based on the first-order KKT condition in
(15) is specified as follows

• Step 1) Initialization:

i = 1,

X(1)
τ = X(0)

τ ; (18)
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• Step 2) Iteration:

i ≥ 2,

X(i)
τ =

N∑
n=1

RnX
(i−1)
τ

(
Iτ +

(
X(i−1)
τ

)†
RnX

(i−1)
τ

)−1

.(19)

Then apply the power normalization, where

X(i)
τ ←

τP

tr
[
X

(i)
τ

(
X

(i)
τ

)†]X(i)
τ . (20)

If ‖X(i)
τ −X(i−1)

τ ‖2 < ε, where ‖·‖2 denotes the spectral
norm, the algorithm is finished, and the output is X(i)

τ .
Else, go to step 2.

Remark 4: Such a KKT-based iteration is a canonical
method to get convergent schemes that yield local optimum
of the objective function, which aims at solving a non-convex
problem. KKT-based iterations have been proposed in different
contexts, e.g., [29].

Remark 5: Notice that X(0)
τ 6= 0, otherwise the algorithm

would be stuck at zero. In our simulations, letting X(0)
τ have

orthogonal rows works well. Also notice that in the algorithm,
we normalize the power of the training signals to be equal to
the power constraint, due to the fact that it is clear that the
optimal solution satisfies the power constraint with equality.

B. Uplink CSIT Feedback

After the users estimate their respective channel coefficients
based on received channel training signals, they feed back their
estimates using predefined codebooks. In this subsection, effi-
cient channel feedback codebooks are designed with spatially
correlated channels. We first propose the entropy coded scalar
quantization after KL transform, which is a simple way to
universally approach the optimal VQ performance. Then we
compare its performance with two VQ approaches, which are
shown to be near-optimal with spatially correlated channels
and also serve as two implementation options.

1) Entropy Coded Scalar Quantization: We consider a
scalar quantization method (component by component) of the
KL-transformed channel vector, denoted by ĥKL

n . Specifically,
denote

ĥKL
n = U †nĥn = Σ

1
2
nzn −U †nên (21)

as the KL-transform of the channel vector of user-n, after
channel training where ĥn is the MMSE channel estimation
after channel training and Un is the left singular matrix of
Rn. Putting aside the channel training error ên for ease of
exposition5, this yields M mutually independent Gaussian
variables with non-identical variances. The reverse water-
filling approach (RWF) [30] can be implemented to achieve
the rate-distortion function (in terms of MSE distortion) in

5Normally the channel training error is small, therefore we ignore it when
designing feedback codebooks.

this scenario, i.e., we allocate the quantization bits according
to the following conditions

M∑
i=1

min
[
νn, λ

(n)
i

]
= D,

Ri = log

(
λ

(n)
i

νn

)
,

M∑
i=1

Ri = Bn, (22)

where D is the total MSE distortion, Ri denotes the number
of bits allocated to the i-th component of ĥKL

n , Bn is the
total number of feedback bits for user-n, and 0 ≤ νn ≤
max{λ(n)

i ,∀i} denotes the water level. The MSE distortion
for the i-th component is the minimum of {νn, λ(n)

i }, i.e.,

D
(n)
i = min

[
νn, λ

(n)
i

]
. (23)

After the BS recovers the KL-transformed channel vector from
the user feedback, it can reconstruct the channel vector by left
multiplying Un. By this scheme, we obtain the relationship
between the channel estimation at the BS side, denoted by
ˆ̄hn, and the real channel,

hn = ˆ̄hn + ên +Unˆ̄en︸ ︷︷ ︸
εn

, (24)

Cov(εn) = Cên︸︷︷︸
M1

+UnDnU
†
n︸ ︷︷ ︸

M2

(25)

ˆ̄Rn , Cov(ˆ̄hn) = Rn − Cov(εn), (26)

where Cên is defined in (12), Dn ,

diag
[
D

(n)
1 , D

(n)
2 , ..., D

(n)
M

]
, and ˆ̄en is the feedback

quantization error. Observing the error covariance matrix
in (25), M1 and M2 represent channel estimation error
covariance due to imperfect channel training and CSI
quantization error covariance, respectively.

Remark 6: There are several approaches to mimic such
behavior using a scalar quantizer, e.g., apply uniform quanti-
zation levels and encode the quantization points with Huffman
code for each of the components with λ(n)

i > νn, based on the
fact that the component is Gaussian distributed with variance
λ

(n)
i . The advantage of this quantizer is that it does not involve

any VQ, thus can be implemented very efficiently in parallel.
Notice also that when Un is a slice of a Discrete Fourier
Transform (DFT) matrix (as in large linear antenna arrays),
the KL-transform can be well implemented by a Fast Fourier
Transform (FFT), therefore the overall quantization can be
made extremely computationally efficient. The quantization
error performance and comparison with VQ approaches will
be shown in Section V-D.

Remark 7: It should be noted that although the SQ-RWF
quantizer quantizes the instantaneous channel vector, the pa-
rameters describing the SQ-RWF quantizer, including the KL-
transformation, the bit allocation information (the number of
allocated bits per selected channel entries) and etc., are solely
determined by the second-order statistics, i.e., the channel
correlations matrices, which are slowly varying. Therefore it
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is not a significant overhead to exchange the description of the
SQ-RWF quantizer, since it needs to be communicated only
at the rate at which the statistics change significantly .

2) VQ: Isotropical and Skewed Random Codebooks: In
the literature, extensive work has been done regarding the
VQ feedback codebook design in spatial CCMs. It is well
understood that in the asymptotic regime where the number of
feedback bits B goes to infinity, the quantization MSE scales
down with B as MSE ∼ 2

−B
M−1 , regardless whether the channel

distribution is i.i.d. or correlated [31] [32]. However, when the
number of feedback bits B is limited, which is the case for
FDD massive MIMO systems due to scarce channel estimation
resources, the exact analysis for the quantization MSE per-
formance is unavailable. In [33], a “skewed codebook” (i.e.,
a codebook based on skewing an isotropical codebook) that
matches the eigenspace of the CCM is shown to be close to
optimal by simulation results. The authors of [31] try to derive
closed-form expressions for the SNR loss for general skewed
codebooks, but the expressions are too complicated to find
the optimal skew matrix in closed form. Notwithstanding the
difficulty in deriving the optimal codebook in closed form,
the Lloyd algorithm can be implemented to find the optimal
codebook, however with high computational complexity [34].

Observing that the CCMs of the users are usually rank-
deficient, in the sense that a number of singular values of the
CCMs are extremely small (see numerical results in Section
V for eigenvalue distributions in popular channel models),
it is advantageous for the users to compress their feedback
overhead by only feeding back along the order-rn dominant
eigenspace of the channel, i.e., a rn-CVA in (6). It will be
shown later that this scheme performs better than feeding
back all the channel space, when B is finite. Specifically,
we consider two kinds of feedback schemes, both of which
concentrate the feedback bits in the dominant eigenspace of the
channels, while one of them leverages an isotropical random
vector to quantize the dominant eigenspace, the other explores
the benefit of a skewed codebook design.

a) Isotropical Quantization in Dominant Eigenspace:
First, the n-th user decorrelates the channel vector leveraging
the rn-DER of the CCM,

ẑ(rn)
n = (Σ(rn)

n )−
1
2 (U (rn)

n )†ĥn. (27)

Notice that assuming the rn-CVA is accurate and the channel
training is perfect, namely ĥn = h

(rn)
n , then ẑ(rn)

n has rn
independently Gaussian distributed unit-norm entries. Based
on this observation, we then use a predefined isotropical
codebook to quantize ẑ(rn)

n . After the feedback, the BS obtains
a quantized version of the channel estimation, after multiplying
the channel correlation eigenvectors,

ˆ̄hn = U (rn)
n (Σ(rn)

n )
1
2 ˆ̄z

(rn)
n , (28)

where ˆ̄z
(rn)
n denotes the quantized version of ẑ(rn)

n at the BS
side, with quantization error ˆ̄en satisfying

ẑ(rn)
n = ˆ̄z

(rn)
n + ˆ̄en. (29)

The quantization error ˆ̄en can be computed based on [32],
where random vector quantization (RVQ) is assumed, by

which the codebook is obtained by generating 2Bn quanti-
zation vectors independently and uniformly distributed on the
unit sphere in Crn . The quantization error ˆ̄en is i.i.d. and
independent with ˆ̄z

(rn)
n . It follows that

Cov(ˆ̄en) =
2
−Bn
rn−1

rn
βIrn , (30)

where

β = tr
[
ẑ(rn)
n (ẑ(rn)

n )†
]

= tr
[
Irn − (Σ(rn)

n )−
1
2 (U (rn)

n )†CênU
(rn)
n (Σ(rn)

n )−
1
2

]
.(31)

Combining (12), (27), (28), (30) and the rn-CVA in (7), we
obtain the relationship between the channel estimation at the
BS side and the real channel, i.e.,

hn = ˆ̄hn+

U (rn)
n (U (rn)

n )†ên +U (rn)
n (Σ(rn)

n )
1
2 ˆ̄en + e(rn)

n︸ ︷︷ ︸
εn

,

(32)
Cov(εn) = U (rn)

n (U (rn)
n )†CênU

(rn)
n (U (rn)

n )†︸ ︷︷ ︸
M1

+
2
−Bn
rn−1

rn
βR(rn)

n︸ ︷︷ ︸
M2

+ ŪnΣ̄nŪ
†
n︸ ︷︷ ︸

M3

(33)

ˆ̄Rn , Cov(ˆ̄hn) = Rn − Cov(εn), (34)

where Cên is defined in (12), and Ūn, Σ̄n are defined in (8).
Observing the error covariance matrix in (33), M1, M2, M3

represent channel estimation error due to imperfect channel
training, CSI quantization error, and the error from only
feeding back the order-rn dominant eigenspace of the channel
vectors, respectively.

b) Skewed Codebook Quantization in Dominant
Eigenspace: Although we concentrate our feedback bits in
the dominant eigenspace based on the isotropical dominant
codebook design in the preceding subsection, there is still
imbalance among the singular values of the CCMs, rendering
the isotropical RVQ codebook described above not optimal.
To this end, we adopt a skewed codebook

Csk =

 A
1
2
nfi∥∥∥A 1
2
nfi

∥∥∥ , i = 1, ..., 2B

 (35)

where fi ∈ Crn is isotropically distributed on the unit-sphere,
and An = U

(rn)
n (Σ

(rn)
n )

1
2 . It is clear that by design we

only feed back the dominant rn eigenmodes of the channel,
i.e., h(rn)

n , neglecting the remaining eigenmodes. The skewed
matrix is designed to match the dominant eigenspace of the
channel, such that the correlation matrix of the codebook is
identical with the rn-DER. By adopting the codebook design,
the total quantization error, which is defined as

MSEq = tr
[
E
(
ˆ̄e
†
n
ˆ̄en

)]
, (36)

can be upper bounded based on the following theorem.
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Theorem 2: Given a channel vector hn, the quantization
error based on the skewed codebook defined in (35) is upper
bounded as

MSEq ≤

rn∑
i=1

(λ
(n)
i )2

λ
(n)
1

2
−Bn
rn−1 + tr

[
ŪnΣ̄nŪ

†
n

]
. (37)

Proof: The proof is based upon the distribution results
developed for the i.i.d. channels in [32]. The detail proof is in
Appendix A.

Remark 8: It is clear that the first and second terms in
(37) represent the error resulting from quantizing the channel
and neglecting the subdominant eigenmodes of the channel,
respectively. Also notice that the quantization MSE by the
skewed codebook is smaller than that by isotropical codebook,

MSEq,iid = tr
[

2−Bn

rn − 1
R(rn)
n + ŪnΣ̄nŪ

†
n

]
(38)

=

rn∑
i=1

λ
(n)
i 2

−Bn
rn−1 + tr

[
ŪnΣ̄nŪ

†
n

]
(39)

≥

rn∑
i=1

(λ
(n)
i )2

λ
(n)
1

2
−Bn
rn−1 + tr

[
ŪnΣ̄nŪ

†
n

]
= MSEq,sk,

(40)

where (38) stems from (33) with β = rn for fair comparison
since we assume the channel vector to be quantized in the
derivation of Theorem 2 has unit entries. The equality holds
if and only if λ(n)

1 = λ
(n)
2 = ... = λ

(n)
rn .

Remark 9: Notice that the quantization error in Theorem 2
does not scale with B to zero. This can be explained that
when B is large, it is better to quantize all the channel
eigenmodes instead of neglecting the sub-dominant modes,
i.e., rn = M . Thus the quantization error with the optimal rn,
which minimizes the quantization error, scales with B to zero,
when B goes to infinity. Meanwhile, the bound in Theorem 2
is tighter than the one with rn fixed to be M , when B is finite.
The numerical results in Section V agrees with our analysis.

Remark 10: Notice that the dominant rank rn, i.e., the order
of the CVA we choose to approximate the correlated channels,
plays an important role in the feedback scheme. The larger
rn is, the more accuracy we obtain by approximating the
correlated channels, whereas the feedback quantization error
is also larger due to the increased quantization dimension.
Therefore, there exists a tradeoff in terms of the dominant
rank, rn. The optimal rn can be determined by a simple one-
dimensional search over 1:M , performed by the n-th user.

C. Data Transmission

For fair comparisons, also in line with the work in [7]
and [35], we consider the RZF linear precoder schemes.
The precoder treats the channel estimates as the real channel
coefficients. Corresponding achievable rates on account of the
imperfect channel estimations are computed in the following
section. Define

Krzf =

(
ˆ̄H
† ˆ̄H +MαIM

)−1

. (41)

The RZF precoding matrix is expressed as

Wrzf = ζKrzf
ˆ̄H
†
, (42)

where ˆ̄H =
[
ˆ̄h1,

ˆ̄h2, ...,
ˆ̄hN

]†
, ζ is a normalization scalar to

fulfill the power constraint in (2), and α is the regularization
factor [36]. Based on (2), we obtain

ζ2 =
N

tr
[

ˆ̄HK2
rzf

ˆ̄H
†
] , (43)

where equal power allocation is assumed, i.e.,
[
E[ss†]

]
i,i

=
P
N . The signal-to-interference-and-noise-ratio (SINR) of user
n is

γn,rzf =

∣∣∣∣ˆ̄h†nKrzf
ˆ̄hn

∣∣∣∣2
N
Pζ2 +

∣∣∣ε†nKrzf
ˆ̄hn

∣∣∣2 + h†nKrzf
ˆ̄H
†
[n]

ˆ̄H [n]Krzfhn

,

(44)

where ˆ̄H [n] =
[
ˆ̄h1, ...,

ˆ̄hn−1,
ˆ̄hn+1, ...,

ˆ̄hN

]†
. The training

dimensionality loss is the length of the training sequence τ .
Assuming the feedback bits are transmitted over the uplink
MIMO-multiple-access-channel (MIMO-MAC), and based on
[25], the total number of feedback channel uses is computed
as

δ =

N∑
n=1

Bn

CMIMO-MAC
. (45)

For ease of exposition, we assume Bn = B, ∀n, and

CMIMO-MAC = κmin [M,N ] log(MSNRul), (46)

where κ ∈ (0, 1) is a scalar representing the diversity-
multiplexing tradeoff in MIMO-MAC as defined in [25], and
SNRul is the uplink SNR. The achievable sum rate considering
imperfect channel training and feedback is expressed as the
solution of the following optimization problem

maximize:
(

1− τ + δ

T

) N∑
n=1

log(1 + γn,rzf)

s.t. 1 ≤ τ + δ ≤ T,
τ ≥ 1, δ ≥ 1, (47)

where the optimization is over the training and feedback
length. The fundamental tradeoff is that larger training and
feedback length provides a more accurate channel estimation
whereas resulting in larger dimensionality loss. Since our focus
is on the performance of the downlink BC achievable rates
with spatially correlated channels, we use an exhaustive search
to find the optimal training and feedback length. The analysis
of the optimal training and feedback length for i.i.d. channels
can be found in [35] and [37].

IV. PERFORMANCE ANALYSIS

In this section, we provide expressions for the downlink
achievable sum rate under the per-user CCMs, leveraging
the deterministic equivalent techniques provided in [35], with
necessary modifications.
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Following the approach in [35], when M goes to infinity,
the SINR of user n, i.e., γn,rzf, satisfies

γn,rzf − γon,rzf
M→∞−→ 0 with probability 1, (48)

where γon,rzf is a deterministic quantity that can be computed
as

γon,rzf =

(ˆ̄eon)2

(1+ˆ̄eon)2

φo

P + ˆ̄Eon + Ion
, (49)

where the parameters involved are specified in (50)-(62). The
derivation is mostly based upon [35], with generalizations to
uncorrelated channel estimation error matrices. The details are
omitted for brevity.

φo =
1

M

N∑
n=1

ˆ̄eon
′

(1 + ˆ̄eon)
2 , (50)

ˆ̄eon =
1

M
tr
[

ˆ̄RnT
]
, (51)

T =

 1

M

N∑
j=1

ˆ̄Rj

1 + ˆ̄eoj
+ αIM

−1

, (52)

ˆ̄e
o′

=
[
ˆ̄eo1
′
, ˆ̄eo2
′
, ..., ˆ̄eoN

′
]T

= (IN − J)
−1
v, (53)

[J ]i,j =
1

M

1
M tr

[
ˆ̄RiT

ˆ̄RjT
]

(
1 + ˆ̄eoj

)2 , (54)

v =
1

M

[
tr
(

ˆ̄R1T
2
)
, tr
(

ˆ̄R2T
2
)
, ..., tr

(
ˆ̄RNT

2
)]T

(55)

ˆ̄E
o

n =
don,n

M(1 + ˆ̄eon)
2 , (56)

don =
[
don,1, d

o
n,2, ..., d

o
n,N

]T
= (IN − J)

−1
bn, (57)

bn =
1

M

[
tr
(

ˆ̄R1T
(
Rn − ˆ̄Rn

)
T
)
, ...

, tr
(

ˆ̄RNT
(
Rn − ˆ̄Rn

)
T
)]T

, (58)

Ion =
un(

1 + ˆ̄eon
)2 +

N∑
j 6=n

don,j

M
(
1 + ˆ̄eoj

)2 , (59)

un =
1

M

N∑
j 6=n

fon,j(
1 + ˆ̄eoj

)2 , (60)

fon =
[
fon,1, ..., f

o
n,N

]T
= (IN − J)

−1
cn, (61)

cn =
1

M

[
tr
(

ˆ̄R1T
ˆ̄RnT

)
, ..., tr

(
ˆ̄RNT

ˆ̄RnT
)]T

. (62)

V. NUMERICAL RESULTS

In our simulations, we evaluate the FDD massive MIMO
achievable rates with various spatially correlated channel
models, and compare those with the TDD system, the FDD
system with i.i.d. channels, and the JSDM scheme. The
azimuth angles of users, i.e., θn, are uniformly distributed in
[−60◦, 60◦], unless stated otherwise. We set the tolerance in
the iterative algorithm in Section III-A, i.e., ε, to be 10−6. The
regularization factor in the RZF precoder is α = 0.01.
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Fig. 1. The CDF of the singular values of user CCMs for various parameters.
M = 50. θ = π
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Fig. 2. Achievable sum rates (AR) in massive MIMO systems with i.i.d.
channels, per-user correlation channels (Cor.), TDD mode and FDD mode
respectively. The downlink and uplink SNR are set to 20 dB and 10 dB,
respectively, unless labeled otherwise. The channel coherence block length is
T = 200. The number of users in the cell is N = 8. The per-user channel
correlation matrices are calculated according to (63) and (64).

A. CCMs: One-Ring Model and Laplacian Model

First, we evaluate the singular value distribution of CCMs.
In Fig. 1, the cumulative probability function (CDF) of the
singular values of the user CCMs is shown. We adopt two
models to calculate the CCM of a uniform linear antenna array.
The first one is the one-ring model (OR) [38], based on which

[R]i,j =
1

2∆

∫ ∆+θ

−∆+θ

e−j2πD(i−j) sin(α)dα, (63)

where ∆ denotes the angular spread, θ denotes the mean user
azimuth angle seen from the BS and D is the antenna spacing.
Alternatively, the Laplacian angular spectrum model (Lap.) is
also considered [24, Section 7.4.2], where

[R]i,j =
1√
2∆

∫ θ+π

θ−π
e−
√

2
∆ |α−θ|−j2πD(i−j) sin(α)dα. (64)

From Fig. 1, it is observed that the singular values of the
CCMs are generally distributed with large deviations under
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various parameters, i.e., some singular values are large while
some others are effectively close to zeros, thus we define the
effective rank (ER) of the CCM. Generally, as the antenna
spacing is smaller, or the angular spread is smaller, the ER
will be smaller. Note that usually the ER calculated by the
Laplacian model is larger than that by the one-ring model,
due to the one-ring model restricting the direction-of-arrival
(DoA) to a finite support. Also note that the number of BS
antennas is relevant, which is shown in [7] that the ratio of ER
and M approaches a constant asymptotically with M going
to infinity. In the following simulations, we evaluate the FDD
massive MIMO achievable rates under different parameters
and both models depicted in Fig. 1.

B. Comparisons between the proposed scheme in correlated
FDD systems with TDD and i.i.d. FDD systems

In presence of spatially correlated channels, the achievable
rates under the proposed scheme are shown in Fig. 2, in
comparison with i.i.d. FDD systems and also correlated TDD
systems. The achievable rates of FDD systems with correlated
channels are obtained using the training sequences obtained
by the iterative algorithm in Section III-A, and the SQ-
RWF feedback codebook design in Section III-B. First, it is
noteworthy that in FDD systems, in general, the achievable
sum rate is not monotonously increasing with the number of
BS antennas, as it does so in the TDD system, due to the fact
that when the number of BS antennas grows large with FDD
mode, the channel estimation dimensionality loss will become
non-negligible. Therefore, there is a large rate gap between the
i.i.d. FDD system and the TDD system, rendering the FDD
mode unfavorable for massive MIMO transmission.

Nevertheless, when the channel is spatially correlated, the
FDD system achievable sum rate under per-user CCMs is
significantly larger than that in i.i.d. channels, especially when
the number of BS antennas is large, thanks to the judiciously
designed dominant channel estimation schemes. The rate gap
between the TDD mode and the FDD mode is narrowed
significantly, especially when M is moderate, which suggests
that it is promising to exploit the large-system gain even with
FDD mode. Note that, while the throughput of TDD systems
generally increases with M , the throughput of FDD systems
would eventually go down if we further increase M , even with
our proposed schemes.

It is shown that the achievable rates of FDD systems are
even larger than TDD systems (with uplink SNR=10 dB)
under some parameters shown in Fig. 2. The phenomenon
is explained by the fact that the uplink SNR is set 10 dB
lower than the downlink SNR in the corresponding simulation
results, which is typical for a cellular system due to the smaller
transmit power of user-terminals, rendering the TDD system
performance inferior due to the imperfect uplink channel
training. Observe that when M becomes larger, the TDD
system sum rate will go up unbounded, eventually surpassing
the FDD system. Moreover, when the uplink SNR is set to be
the same as the downlink SNR, see corresponding curves, the
TDD system performs better, which is as expected.
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Fig. 3. The achievable sum rates (AR) obtained by the eigenspace channel
estimation, compared to the JSDM scheme. The downlink and uplink SNR
are both 10 dB. The number of simultaneous users is N = 8.

C. Comparisons with JSDM

In Fig. 3, we compare the achievable sum rates obtained
by the proposed eigenspace channel estimation to the JSDM
scheme [7], [8], which was the first to exploit the spatial
correlation to benefit the FDD massive MIMO system. Note
that the uplink CSIT feedback is not treated in the previous
JSDM papers [7], [9]. To make fair comparison, we assume
that the JSDM scheme uses an isotropical VQ feedback
codebook, since it is unknown whether the JSDM scheme can
also benefit from a better-designed codebook for correlated
channels after the pre-projection of channel vectors. To get
more insights and understand the simulation results better, it
is important to first illustrate the merits and demerits of the
JSDM scheme compared to our scheme.

The JSDM scheme has the advantage to better suppress
the channel estimation overhead. Specifically, by grouping the
users based on their respective CCMs and performing the
pre-beamforming, the equivalent number of BS antennas in
each virtual sector, i.e., bg in [7], can be optimized to strike
a good balance between the power gain, which scales with
bg , and the channel estimation overhead. In an extreme case,
bg can be made as small as the number of users in each
virtual sector, thus, the overall channel estimation overhead
scales with the number of users in each virtual sector, which
drastically decreases the dimensionality loss. However, on
the downside, while the JSDM scheme adopts a divide-and-
multiplex approach, the division is imperfect, in the sense
that the JSDM scheme suffers from the inherent residual IGI,
especially when the CCMs of the users in each group are dif-
ferent, rendering that the pre-beamforming cannot counteract
the IGI completely. Notice that in our framework, the proposed
dominant channel estimations incorporate all the user CCMs
into the scheme design, which significantly mitigates the IGI.
Moreover, it is noteworthy that the computational complexity
of the JSDM scheme is smaller compared with our proposed
scheme, since our scheme deals with a higher dimensional
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channel matrix6.
Specifically, we follow the parameters used in the simulation

in [8, Section IV-C]. The fixed angular quantization method
is adopted to divide users into G = 8 user-groups, where each
group performs the per-group-processing. The quantization
points are

θ ∈ {−57.5◦,−41.5◦,−23◦,−7.5◦, 7.5◦, 23.5◦, 41.5◦, 57.5◦},
(65)

and the angular spread for the quantization matrices are
identical with the user-angular-spread, which is specified in
Fig. 3. To keep the IGI under control, similarly with [8],
we further divide the user-groups into 2 patterns, where only
the users in the same pattern are scheduled simultaneously7.
The ER in each virtual sector, i.e. r? in [7], is chosen while
neglecting extremely small singular values of the CCM, and bg
is chosen to optimize the sum rate by exhaustive search. The
training sequences of each virtual sector are unitary sequences
as in [7, Section VI].

The deterministic equivalents for the JSDM scheme are
computed based on [7, Appendix A], with generalizations to
distinct CCMs within each user-group. The details are again
omitted for brevity.

It is observed from Fig. 3 that the JSDM scheme achieves
better sum rate when the channel coherence block length is
small, e.g., T = 100, and the number of BS antennas M is
large. Qualitatively, this is as expected since the small channel
coherence block length and large M both put more weight
in the need to suppress the channel estimation overhead, and
based on [7], a large M also leads to the fact that the singular
vectors of the CCMs can be well approximated by the columns
of a DFT matrix, which ensures orthogonality as long as the
DoA intervals of different users are disjoint. On the other hand,
the achievable sum rate of our proposed eigenspace channel
estimation shows evidently better achievable rate when the
channel coherence block length is larger, which elevates the
urgency to suppress the channel estimation overhead, or when
the angular spread of users is larger, which causes larger
residual IGI in the JSDM scheme. Notice that large angular
spread also decreases the achievable rates of our scheme,
due to the increased channel estimation dimensionality loss,
however our scheme turns out to be more resilient in this
regard. Although there are several parameters in the JSDM
scheme, that may be properly tuned to achieve better rate
than the eigenspace channel estimation scheme, the eigenspace
channel estimation scheme still has the advantage of low
complexity, and the optimization for the JSDM scheme goes
out of the scope of this paper.

D. Performance Gain Leveraging Dominant Eigenspace
Channel Estimation

Furthermore, we demonstrate how much gain we can get
from leveraging the training and feedback schemes designed

6Possible operations on the channel matrix include inversion and SVD,
depending on the precoding algorithm.

7For fair comparison, we set the number of users in the achievable sum
rate of the proposed scheme to be half of the total users in the JSDM, since
there are 2 patterns.
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Fig. 4. Achievable sum rates (AR) in massive MIMO systems with eigenspace
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Fig. 5. The MSE caused by only the channel training process normalized by
the number of users, versus the number of training symbols of the optimized
training signals given by the iterative algorithm, compared with random
orthogonal training sequences. N = 8, M = 20. The per-user channel
correlation matrices are calculated according to the one-ring model, with
D = 0.5λ and ∆ = 10◦.

for the multi-user CCMs, by comparing with the unitary
training and feedback schemes used in the i.i.d. channel
case. The rate gain is depicted in Fig. 4, showing leveraging
dominant eigenspace channel estimation can indeed improve
the sum rate of FDD massive MIMO system with spatially
correlated channels. The detailed performance analyses of the
proposed channel training and feedback schemes are shown in
Fig. 5 and Fig. 6, respectively.

For the training process, the MSE performance of the itera-
tive algorithm we developed in Section III-A, which finds the
optimized training sequences with per-user CCMs, is shown in
Fig. 5. For comparison purposes, the simulation also considers
the unitary training sequences, which are shown to be optimal
with i.i.d. channels [39]. We assume, for the unitary training
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The mean DoA θ = π/6, angular spread ∆ = 10◦, antenna spacing D =
0.5λ and the CCM is calculated based on the one-ring model. The number
of BS antennas M = 64.

sequences8, XτX
†
τ =

τP

M
IM if τ ≥M ,

X†τXτ = PIτ if τ < M .
(66)

.
When the number of training symbols is small, the MSE

achieved by the iterative algorithm is much lower than the
unitary training sequences, due to the fact that in presence
of channel correlation, the training sequences obtained by our
algorithm can find the eigenspace that needs to be estimated
more accurately and concentrate the power to that subspace.
Note that when the downlink SNR is large and the number of

8Notice that the unitary training sequences for the case τ < M is not
well defined in [39], since it does not suffice to have τ < M pilots in i.i.d.
channels. Here we assume Xτ has orthogonal rows when τ < M .

training symbols is large enough9 to train all the subspaces, the
unitary training sequences are asymptotically optimal. Such
observations are further evaluated by setting the downlink
SNR to 10 dB, which shows a certain MSE gap between
the optimized training sequences and the unitary training
sequences, even when τ = M .

Fig. 6 shows the quantization MSE performances of SQ-
RWF and VQ with isotropical and skewed codebooks. It is
observed that SQ-RWF achieves better MSE performance,
even with the shaping loss (SL)10 when the number of feed-
back bits is large. Notice that in general VQ is more efficient
than SQ, especially when the vector is correlated. However,
after the KL-transform, the channel vector is decorrelated into
independent Gaussian variables with non-identical variances,
in which case the RWF is the optimal bit allocation in terms
of MSE distortion.

Moreover, to compare the SQ-RWF scheme with conven-
tional VQ approaches, according to the well-known results on
VQ methods in the literature [17], to achieve the perfect-CSIT
DoF, the total number of feedback bits for an M -dimensional
channel vector is approximately

B =
M − 1

3
ρdB, (67)

where ρdB is the downlink SNR (in dB). Given the parameters
in Fig. 7 and ρdB = 20 (for fair comparison with MSE =
10−2 since it is found that the MSE should scale inversely
with the SNR to achieve the perfect-CSIT DoF), the number
of feedback bits in (67) is 420, whereas the number of total
feedback bits with SQ-RWF is 164 by simulation. However,
it should be noted that the such a comparison is not quite fair
since the feedback codebook design in [17] is not optimized
for the spatially correlated channels.

Fig. 7 gives a concrete example to specify the bit allo-
cation of the SQ-RWF scheme. Note that we perform the
proposed quantization method on the user-channel after the
KL-transform, i.e., ĥKL

n in (21). The entries of ĥKL
n are sorted

based on the variations in descending order and the indices
are shown as the x-axis. To achieve a target quantization
MSE, it is shown that the round-off SQ-RWF, which rounds
off the number of feedback bits given by the RWF approach
to its nearest integer, uses a slightly larger number of bits
than the SQ-RWF scheme which allows fractional number
of feedback bits for each channel entry. It is shown that the
SQ-RWF scheme “throws away” a number of channel entries
due to their small variations, i.e., allocating zero bits to them,
while concentrates its feedback bits to a few dominant channel
entries. In addition, the SQ-RWF scheme uses a larger number
of feedback bits to quantize the dominant entries, as well as

9In this case we have τ ≥M , then there are enough channel observations
to recover the channel coefficients perfectly when the downlink SNR goes to
infinity.

10The shaping loss is defined as the loss due to the fact that scalar
quantization operates on a hypercube, while optimal vector quantization
operates on a hypersphere. It is equal to 1

2
log(πe/6) bits per real dimension,

and corresponds to the difference of the differential entropies of a Gaussian
and a uniform distribution with the same (unit) variance. A full thorough
treatment of entropy-coded scalar quantization in an information theoretic
sense can be found in [40].
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Fig. 9. Performance of FDD massive MIMO systems with CCMs and various
channel coherence block length. The dotted and solid lines represent the
system with i.i.d. channels and spatially correlated channels, respectively.
The downlink and uplink SNR are set to 20 dB and 10 dB, respectively.
The number of users in the cell is N = 8. The per-user channel correlation
matrices are calculated according to the one-ring model, with D = 0.5λ and
∆ = 10◦.

quantizing more channel entries, when a better quantization
accuracy is required.

The impact of the dominant rank, i.e., rn, we choose in the
VQ feedback process on the quantization MSE is shown in
Fig. 8, with different number of feedback bits. The numbers
of feedback bits (42, 61, 79) shown in the figure correspond
approximately to 2, 3, 4 bits per channel entry. The tradeoff
between the quantization accuracy of the effective channel and
the estimation error resulting from the neglected eigenspace
of the CCM is shown. It is observed that there exists an
optimal rn in terms of minimizing the total feedback error.
The optimal rn is increasing with the number of feedback
bits, for the reason that when we have more feedback bits,
we can afford to estimate a higher-dimensional eigenspace,
rendering a better accuracy of the CSIT feedback estimation.

The performance of the skewed feedback codebook is also
shown in the figure. The gain in terms of MSE is fairly small,
when the optimal dominant rank is chosen, because the error
mainly stems from neglecting the non-dominant eigenspace.
Note that when rn is large, the performance gain of the skewed
codebook is more evident since the MSE in this regime is
dominated by the channel quantization. It is worth mentioning
that the absolute values of the quantization error are fairly
small, compared with the training error. We find that the
channel estimation error mainly comes from the downlink
channel training process which is analog in nature, rather than
the digitalized CSIT feedback process, for the reason that the
MSE scales down linearly with the number of training symbols
(13), but exponentially with the feedback bits (30).

In Fig. 9, the impact of channel coherence block length
on the sum rate improvements is shown. Significant rate
improvement, which is up to two-fold, is expected for all
channel coherence block length. The results suggest that under
the spatially correlated channels, which is especially common
with mm-wave channels [9], along with a well-designed trans-
mission strategy, namely the training and feedback schemes,
the FDD system is capable of realizing significant massive
MIMO gain.

VI. CONCLUSIONS

By computing the achievable rates with a RZF precoder of
FDD massive MIMO systems, on account of the downlink
channel training and uplink CSIT feedback dimensionality
loss and corresponding channel estimation error, we showed
that spatial channel correlation at the BS side is beneficial
to the FDD massive MIMO system. The benefit is especially
prominent if the channels are strongly correlated, namely the
CCMs are effectively rank-deficient. In particular, we proposed
an iterative algorithm to find the optimized channel training
sequences in presence of multiuser spatial correlation, and a
KL-transform followed by SQ with RWF bit-loading feedback
codebook design, which is extremely computationally efficient
and thus easy to implement in practice while achieving near-
optimal performance. Our proposed approach, which achieves
dimensionality-reduction channel estimation, can be seen as an
alternative to the pre-projection and effective channel approach
in the JSDM scheme. Moreover, it is noteworthy that while
achieving a significant performance gain, our approach only
requires minimum modifications of the widely-used training-
based transmission scheme, and thus it is easy to implement.

Numerical results show significant rate improvements when
leveraging our proposed eigenspace channel estimation ap-
proaches under spatially correlated channels, in comparison
with i.i.d. FDD massive MIMO systems. In fact, when the
channel correlation is strong and the number of BS antennas is
not very large, the achievable sum rate of FDD massive MIMO
systems can even outperforms TDD systems. Comparisons
with the JSDM scheme reveal both schemes have advantages
under different channel conditions, such as coherence time and
angular spread. In particular, our proposed schemes display
better performance when channel coherence block length is
large, or the angular spread of the users is large, while
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requiring a higher computational complexity due to operating
on a higher-dimensional matrix.

These results suggest that in FDD massive MIMO systems,
increasing spatial channel correlation, e.g., by decreasing the
antenna spacing, more line-of-sight transmission, etc., can be
beneficial. Although this differs from the favorable propaga-
tion conditions in TDD systems, which prefer i.i.d. channels to
maximize the total DoF, the FDD system benefits significantly
from correlation, which enables dimensionality loss reduction
as far as channel estimation is concerned. The tradeoff between
the DoF of the downlink BC and the spatial correlation in FDD
massive MIMO is an interesting problem for future work.

APPENDIX A
PROOF OF THEOREM 2

Proof: The quantization MSE of the skewed codebook is
expressed as

MSEq = Ezn

{
ECsk

[
z†nΛnzn −max

i

[
f †i Λnznz

†
nΛnfi

f †i Λnfi

]]}
+ tr

[
ŪnΣ̄nŪ

†
n

]
, (68)

where hn = QnΛ
1
2
nzn, Qn is an orthogonal matrix, zn ∼

CN (0, Irn). Define the first term in (68) as ∆1. We obtain

∆1 = Ezn

∫ z†nΛnzn

0

[
Pr

(
f †i Λnznz

†
nΛnfi

f †i Λnfi

≤ x|f †i fi = 1
)]N

dx (69)

≤ Ezn

∫ z†nΛnzn

0

[
Pr

(
f †i Λnznz

†
nΛnfi

λ1

≤ x|f †i fi = 1
)]N

dx (70)

= Ezn

∫ z†nΛnzn

0

Pr


f †i Λnzn√

z†nΛ2
nzn

2

≤ λ1x

z†nΛ2
nzn
|f †i fi = 1

)]N
dx (71)

≈ Ezn

∫ z
†
nΛ2

nzn
λ1

0

Pr


f †i Λnzn√

z†nΛ2
nzn

2

≤ λ1x

z†nΛ2
nzn
|f †i fi = 1

)]N
dx (72)

= Ezn

z†nΛ2
nzn

λ
(n)
1

∫ 1

0

[
1− (1− x)

rn−1
]N

dx (73)

≈

rn∑
i=1

(λ
(n)
i )2

λ
(n)
1

2
−Bn
rn−1 , (74)

wherein the equality (69) follows from integrating (68) by
parts, the approximation in (72) follows from the work in [31,
Appendix J], which shows the dominant term of the integral in
(71) is (72), then by [32, Corollary 1], (73) and (74) follows.
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