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ABSTRACT

Modeling and simulation of a cellular net-
work typically assumes that the target area is
divided into regular hexagonal cells and mobile
stations (MSs) are uniformly scattered in each
cell. This implies a statistically uniform distribu-
tion of traffic load over space, but in reality the
spatial traffic distribution is highly non-uniform
across different cells, which calls for actual spa-
tial traffic models. In this article, we first present
the analysis of traffic measurements collected
from commercial cellular networks in China, and
demonstrate that the spatial distribution of the
traffic density (the traffic load per unit area) can
be approximated by the log-normal or Weibull
distribution depending on time and space. Then
we propose a spatial traffic model which gener-
ates large-scale spatial traffic variations by a sum
of sinusoids that captures the characteristics of
log-normally distributed and spatially correlated
cellular traffic. The proposed model can be
directly used to generate realistic spatial traffic
patterns for cellular network simulations, such as
performance evaluations of network planning
and load balancing.

INTRODUCTION

Due to the emergence of variety of mobile
devices and their applications, the volume of
mobile traffic carried by cellular networks has
been growing rapidly. Cisco [1] reported that
global mobile data traffic in 2012 was over twelve
times greater than that in 2000 and forecasted
that global mobile data traffic will increase 13-
fold between 2012 and 2017, reaching 11.2
exabytes per month by 2012. In addition, mobile
traffic has been diversifying from voice to multi-
media, among which video traffic will account
for two-thirds of the global mobile data traffic by
2017.

In order to prepare for such an exabyte
mobile traffic era, network operators have been
forced to search for solutions to substantially
enhance network capacity with limited spectrum
and energy resource. Traffic distribution over
space shows considerable geographical disparity
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and varies hour by hour which is dependent
upon people’s daily activity. The resulting
dynamics of network traffic bring on challenges
and provide the motivation to develop a network
architecture that can dynamically adapt to the
variation in a cost-effective manner. Our previ-
ous work about TANGO (Traffic-Aware Net-
work Planning and Green Operation) has
suggested that network should be planned and
dynamically operated according to the non-uni-
formly distributed nature of mobile traffic for
improving energy efficiency [2]. For this pur-
pose, analyzing and characterizing mobile traffic
are indeed crucial.

Network traffic model is regarded as a large-
scale traffic model which represents spatial-tem-
poral variations of the aggregate traffic load over
a large area gathered from base stations (BSs)
or base station controllers (BSCs) [3, 4]. Knowl-
edge about large scale space-time dynamics of
network traffic will provide an opportunity to
yield substantial improvements in performance,
and this is specifically valuable from the network
provider’s point of view.

For example, network planning, which signifi-
cantly affects installation (Capex) and opera-
tional (Opex) expenses of cellular networks,
begins with grasping the spatial distribution of
traffic demand. Cell breathing [5] allows the
dynamic adjustment of cell coverage for enhanc-
ing network capacity where traffic loads are
unevenly distributed over different cells.

In this article, we concentrate upon analyzing
spatial traffic distributions from traffic measure-
ments in commercial cellular networks and aim
at providing a spatial model of network traffic.
The spatial distribution of the cell traffic, which
is the aggregate traffic load actually served by a
BS within a specific time interval, has been stud-
ied in the literature for 2G networks [6, 7] and
3G networks [4]. Authors in [6] found that voice
traffic in different cells of GSM networks can be
described by a log-normal distribution. Authors
in [7] found that data traffic loads in different
cells of GPRS/EDGE networks can be approxi-
mated by log-normal mixtures. However, traffic
distribution in different cells does not indicate
the real spatial traffic distribution, because the
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traffic data is gathered from BSs with different
coverage areas. Reference [4] provides compre-
hensive analysis works on traffic dynamics of 3G
data networks, and regarding spatial traffic dis-
tribution, the results also showed that traffic dis-
tributions in different cells are highly uneven.
Majority of prior studies focused on analyzing
statistics and characteristics of cellular traffic but
did not provide any mathematical model which
can be used to simulate and to evaluate spatial
traffic variations.

In order to understand the real spatial distri-
bution of traffic demand, the traffic density
which is defined as traffic demand per unit area
should be considered instead of the cell traffic.
Our previous work [8] proposed a spatial model-
ing of Scalable, Spatially correlated, and Log-
normally distributed Traffic (SSLT), which
captures inhomogeneous nature of spatial traffic
distributions in cellular networks. The model is
capable of generating diverse spatial patterns of
random traffic demand in a target area by con-
trolling its parameters. On the other hand, in
order to validate our spatial traffic model, we
collected traffic data from the EDGE/GPRS
networks installed at one of the major provinces
in China with 4 million subscribers. We found
that the spatial distribution of the traffic density
is highly skewed and the log-normal or Weibull
distribution can be used to approximate it. In
order to fit it accurately, the mixture distribution
such as log-normal mixtures is required. The cell
traffic, the traffic density, and the spatial corre-
lation are evaluated, and especially for repre-
senting the spatial correlation, the measure of
coherence distance is newly introduced. The
measured statistics of traffic density are reflected
in the spatial modeling of SSLT.

To the best of our knowledge, our work is the
first trial to present a systematic representation
of spatial pattern of network traffic based on sta-
tistical analysis of real measurements. Also, we
have provided the required statistical parameters
in the model. It is expected that the model can
be utilized for realistic simulations of cellular
networks.

THE MEASUREMENTS OF
SPATIAL TRAFFIC DISTRIBUTION

We collected traffic records including voice and
data traffic from EDGE/GPRS networks during
November 15 to December 3, 2012. The target
area of the measurement is an area of 160 x 180
km which includes all types of areas (urban,
rural, and etc.). There are about 5763 cells
(21987 sectors) in the target area. Cell types
include macro-cells as well as small cells, such as
micro- and pico-cells, which are deployed inside
or outside buildings and their coverage diame-
ters vary from a few dozen meters (m) to a few
kilometers (km).

We obtained the data of voice traffic mea-
sured every five minutes and that of data traffic
measured every hour. The cell traffic is defined
by the aggregated traffic load of all the sectors
in the same cell during a certain time interval.
Thus the cell traffic of data traffic is the aggre-
gated traffic volume that each BS actually trans-

mitted during a one-hour interval and measured
in the unit of bytes. Since the voice traffic mea-
surements show similar tendency to data traffic,
we would merely present data traffic measure-
ments in this article.

Exactly modeling the spatial distribution of
real traffic demand, which also varies in time
domain, requires massive raw data such as user
locations and traffic volume of each device at
every moment, which is impracticable to obtain
from the commercial cellular networks. Instead
we consider the traffic density, which can be eas-
ily calculated by using the information from BSs.
It is defined as the cell traffic of a BS divided by
the coverage area of the BS. As the actual area
of cell coverage is difficult to measure, we
obtained the area of Voronoi cells [9] drawn by
using the location of BSs. It is noteworthy that
the traffic density (byte/km?2) can be changed to
the density of data rate requirements (b/s/km?2):
through dividing the traffic density by the time
of one hour (the measurement interval of data
traffic is one hour).

It is not our purpose to insist on the accuracy
of the obtained traffic density for representing
the spatial distribution of user traffic demand.
Because of capacity limits for a BS, the actual
traffic demand of users may exceed the mea-
sured figures of traffic volume. The area
obtained from Voronoi cells does not exactly
correspond with the actual coverage of BSs.
However, the traffic density is a simple approxi-
mation for representing the intensity of user
traffic demand in a unit area as well as the spa-
tial difference of traffic demand across different
cells of diverse sizes.

THE SPATIAL DISTRIBUTION OF THE CELL TRAFFIC

Figure la shows the downlink (DL) cell traffic
distribution of 5763 cells in the target area at 9
pm of a week day when the use of data traffic is
exhibited relatively high throughout the day.
Since the histogram of the empirical data shows
a highly right-skewed distribution: the measured
values of skewness and kurtosis are 2.99 and
18.99 respectively, the distribution of log-trans-
formed data is depicted. We found that the
empirical distribution can be accurately fitted by
Gaussian mixtures (i.e., the cell traffic distribu-
tion can be modeled by log-normal mixtures)
where their means and variances are obtained by
the Expectation Maximization (EM) algorithm
with either 2 or 3 components in most cases,
which is consistent with the results in [7].

In addition, the results of parametric fitting
using maximum likelihood parameter estimates
of the log-normal, gamma, and Weibull distribu-
tions, which are commonly used distributions to
describe skewed empirical data, are also shown
in Fig. 1la. An “eyeball” comparison indicates
that the gamma and Weibull distributions show
a close fit of the distribution of empirical data,
but the log-normal distribution does not. The
Kolmogorov-Smirnov test (K-S test) is used to
check for goodness-of-fit of empirical data to
test distributions. We test the distribution fitting
of the cell traffic every hour for 12 days at the 5
percent significance level and found that the
gamma and Weibull distributions are accepted
by 14.3 percent and 34.7 percent of the total

It is not our purpose to
insist on the accuracy of
the obtained traffic
density for representing
the spatial distribution of
user traffic demand.
Because of capacity
limits for a BS, the
actual traffic demand of
users may exceed the
measured figures of
traffic volume.
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Figure 1. The probability density function (PDF) of the cell traffic and the traffic density with distribution fittings: a) 5773 cells of whole
target area; b) 2727 cells of a metropolitan area.

measurement time respectively, while the distri-
bution of log-normal mixtures is accepted all the
times. Therefore, the findings from above mea-
surements show that the spatial distribution of
the cell traffic can be approximated by the
gamma or Weibull distributions and accurately
modeled by the mixture distribution such as log-
normal mixtures in this article.

THE SPATIAL DISTRIBUTION
OF THE TRAFFIC DENSITY

The traffic density is analyzed based on a grid
basis. First, the cell traffic of each cell is divided
by the corresponding Voronoi cell area to get
the traffic density. Then the target area is divid-
ed into a square grid and each pixel (square) in
the grid is assigned to the traffic density of its
nearest BS (cell), and thus a matrix of traffic
density can be obtained. All pixels within the
same Voronoi cell have the same value, that is,
we assume traffic demand within a cell is uni-
formly distributed in the measurement. Hence
the accuracy of this approximation is high when
the cell size is small.

A metropolitan area of 40 x 40 km, which
includes a large city (population of more than 8
million) as well as surrounding suburban and
rural areas, is selected for measuring the traffic
density. The distribution of the traffic density is
strongly positively skewed, so we also try to fit
the empirical data with log-normal mixtures, log-
normal, gamma, and Weibull distributions. The
measured values of skewness and kurtosis of the
empirical data are 19.95 and 712.52, respectively.
Figure 1b shows the traffic density distribution
of all the cells in the metropolitan area at 9 pm.
It is shown that the distribution can be approxi-
mated by either log-normal mixtures or the log-
normal distribution, but fitting with the gamma
or the Weibull distribution shows poor perfor-
mance.

The results of the K-S test show that all the
distributions are rejected. This is because empir-

ical data of the traffic density in this article are
approximations because of the previously men-
tioned assumptions (i.e., the uniformly distribut-
ed traffic density within a cell and the
disagreement of Voronoi cell areas and actual
coverage areas), so empirical data does not
exhibit complete statistics. However, the K-S
statistics (the maximum distance between the
cumulative distribution function (CDF) of empir-
ical data and the reference distribution) exhibits
low values, where the K-S statistics for log-nor-
mal mixtures and the log-normal distribution are
0.0193 and 0.0382, respectively.

We also checked traffic densities of some
specific urban and rural areas extracted from the
whole target area. Here we take two different
dense urban areas, “urban areal” and “urban
area 2,” where cell density (the number of cells
per square kilometer) is 28.6 and 42 respectively,
as examples. The snapshot of the traffic density
of “urban areal” at 9 pm is visualized in Fig. 2a.
The side length of the square pixel for urban
areas in Fig. 2a is set to 3/300 km. The distribu-
tion of a specific area also exhibits highly skewed
distribution as the measured values of skewness
and kurtosis of the empirical data are 6.18 and
70.84, respectively.

Figure 2b shows the CDFs of the traffic den-
sity of the two ares. Log-normal mixtures, the
log-normal, Weibull, and gamma distributions
are examined by the K-S test, but it is found that
all of them are rejected in the same manner like
the metropolitan area case. In terms of the K-S
statistic, the distribution of log-normal mixtures
shows the most accurate fit for the empirical dis-
tribution of both areas. The gamma distribution
shows relatively bad fits of the empirical data in
comparison with the others for almost all the
place and time. Except log-normal mixtures, the
Weibull distribution shows better approximation
performance in case of “urban area 1,” while the
log-normal distribution is better in case of
“urban area 2.”

In fact, both the log-normal and Weibull dis-
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Figure 2. Three-dimensional view of the DL traffic density and its distribution: (a) the traffic density of “urban area 1”; b) the cdf of traf-
fic density measurements and distribution fitting of “urban area 1” (left) and “urban area 2” (right).

tributions have been used together in many
fields to describe the skewed empirical data. For
example, in reliability engineering, they are
alternatively used for measuring and estimating
the product life [10]. From the results in Fig. 1b
and Fig. 2b, we found that the log-normal and
Weibull distributions can be selectively used to
approximate the spatial distribution for a certain
region at a certain time. Since the distribution of
the traffic density varies across both space and
time, one distribution can only provide an
approximation of a small area at a specific time,
where its distribution can be regarded as station-
ary. Through a large number of measurements
from different areas and times, we conclude that
the spatial distribution of the traffic density in cel-
lular networks can be approximated by the log-nor-
mal or the Weibull distribution, which is subject to
change with time and place, and accurately
described by the mixture distribution such as log-
normal mixtures.

In this article, the log-normal distribution is
selected for spatial modeling of the traffic densi-
ty which will be described later. It is necessary to
obtain statistics of the traffic density for parame-
ter settings of modeling. If Z is a random vari-
able with a standard normal distribution, then X
= exp(cZ + ) has a log-normal distribution
with the mean M = exp(n+062/2) and variance
$V = (exp(c?) - 1)exp(2u+02), where the loca-
tion parameter | and scale parameter o is the
mean and variance of the variable’s logarithm.
Parameters of the distributions show diversity
depending on time and area, but the distribu-
tions from almost all regions can be approximat-
ed by the log-normal or Weibull distribution.
Hence, we just select the parameters of a typical
urban and rural area, which are summarized in
Table 1. They are obtained by parametric fitting
with maximum likelihood estimates of log-nor-
mal mixtures and the log-normal distribution.
The urban area in the table is the “urban area 1”
which is the core of the city including a rail way

station, high buildings, apartments, and etc. The
rural area in the table is a typical agricultural
area of 20 x 20 km where the number of cells
per square kilometer is 0.19.

MODELING SPATIAL CORRELATIONS OF
TRAFFIC DENSITY

The most fundamental feature for characterizing
the spatial distribution of the traffic density is
the highly skewed distribution such as the log-
normal distribution with the parameters speci-
fied in Table 1. Additionally, another kind of
measure is required to describe spatial patterns,
like smoothness or spatial fluctuations, of the
traffic density. Hence, we newly define the mea-
sure of the coherence distance which can evalu-
ate the correlation between the traffic density of
adjoining regions. The coherence distance is
defined as the distance that the two-dimensional
autocorrelation function (ACF) of traffic density
drops to the half of its peak value.

The two-dimensional sample ACF of the traf-
fic density of Fig. 2a is depicted in Fig. 3a, and
its enlarged figure of the cross-section is shown
in Fig. 3b. The value of autocorrelation is nor-
malized by its maximum value. Since the shape
of the two-dimensional sample ACF is not sym-
metrical, we obtained the coherence distance by
averaging the distances between the origin and
the points that have a autocorrelation value of
0.5=* €, where € is set to 0.01. In Fig. 3b, the
measured average coherence distance of the
urban area is 71.4m, which means that traffic
demands of two points separated by more than
71.4m have the correlation lower than 0.5. The
coherence distance of the selected rural area
specified in Table 1 is much larger than that of
the urban area and spatial patterns of rural
areas normally show slower fluctuations.

Since coherence distance is affected by target
area, grid size, and cell area, the provided values
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If one only has a
purpose of research on
the algorithm of
network planning, the
procedure of traffic
estimation is not
necessary. In that case,
the spatial traffic model
which can generate
virtual spatial traffic
patterns must be the
fundamental require-
ment for examining
their algorithm in
simulations.

6 Each BS may be
equipped with multiple
transmit antennas and
each transmit antenna
can be recognized as a
transmit point.

Rural Urban
Statistics and parameters
UL DL UL DL
Location(p) 11.573 12.572 17.7956 18.93
A lognormal
distribution
Scale(o) 2.3055 2.7985 2.1188 2.3991
iR 12.2822 5.2920 17.6345 20.9990
Location 153 9.2172 11.3766 19.4508 15.3133
us 13.9874 14.0221 15.1012 19.3297
(o2} 0.2368 0.0283 1.2168 0.5081
Lol Scale o3 4.3690 4.4479 0.7933 5.0516
mixtures
O3 0.3911 1.6622 3.2990 1.9255
P 0.4081 0.0688 0.3287 0.2212
Mixture proportions P2 0.3601 0.3210 0.4280 0.1915
pP3 0.2318 0.6102 0.2433 0.5874
. Coherence distance (m) 1075.7 1075.4 80 71.4
Spatial
lati . .
correlation The maximum spatial spread (®may) ~ 0.001202  0.001163  0.012673  0.011592

Table 1. Evaluation of fitted log-normal distributions and spatial correlation.

may not be consistent if settings of the measure-
ment are different. Therefore, we do not claim
the accuracy of the values of coherence distance
but the necessity to reflect a measure of the spa-
tial correlation for spatial traffic modeling,
which was also stressed in [11]. In the following
section, we present our spatial modeling scheme
of the traffic density with the coherence distance
and a log-normal distribution with the estimated
mean and variance.

SPATIAL MODELING OF THE
TRAFFIC DENSITY

From our measurements, we found that the spa-
tial distribution of the traffic density is spatially
correlated and can be approximated by the log-
normal distribution. In our previous work [8], we
proposed spatial modeling of SSLT which is able
to generate large-scale spatial variations in the
traffic density. It is a sum-of-sinusoids statistical
model with introducing randomness into the
variables in the model. A random traffic density
map can be generated by the model and the
statistics of the map can be adjusted for various
scenarios by controlling the parameters.

Our model is built on a grid-based plane like
the same manner as the measurement of traffic
density in the previous sections. The target
region A is divided into M x N square pixels and
the pixel size is set to be the same as the one in
the measurement. A pixel g, ,, where m =1, ...,
M andn =1, ..., N, contains the traffic density

pm,n (bytes/kmz)- Let p= (pm,n)m=1,.4.,M;n=1,...,N
denote the traffic density matrix which repre-
sents the random traffic density map.

Letx, ,andy, , be the two-dimensional
Cartesian coordinates of the center of the pixel
&mn in unit of meters. To generate a log-normal-
ly distributed traffic den51ty map, a Gaussian
random field, p(@ = (P47 m=1.... Mn=1....n> I
first generated by

L
pgnGr)t = \/z Ecos(ilxm,n +¢Z)Cos(jlym,n +l//l) (1)

where angular frequencies i; and j; are uniform
random variables between 0 and ®,,,x and phas-
es ¢; and y; are uniform random variables
between 0 and 2n. For a large enough L, pﬁnG,),
can be approximated as standard Gaussian ran-
dom variables according to the central limit the-
orem. We found that the value L = 10 should be
large enough. We define o,y as the maximum
spatial spread which decides the rate of fluctua-
tions of the random field.
Finally, by taking the exponential function of
(G ) with the location parameter p and the scal-
1ng parameter G, we obtain the traffic density
matrix whose elements are log-normally dis-
tributed as follows:

Pinn = XD + 1),

(@)
wherem =1, ..., M and m = 1, ..., N. By con-
trolling 1 and o, the log-normal distributed ran-
dom values p are scaled to fit the statistics of
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Figure 3. The normalized two-dimensional sample autocorrelation function (ACF) of the traffic density shown in Fig. 2a:

sional visualization; b) the cross section of (a) along y axis.

traffic density for specific regions, e.g., an urban
or a rural area. The maximum spatial spread
Onay affects the two-dimensional ACF of Eq. 2
and the resulting coherence distance. The corre-
lations between traffic densities of adjacent
regions (or coherence distance) get smaller as
Wmax gets larger, which means that the generated
random traffic density map will be more fluctu-
ated.

The sample of the traffic density of downlink
generated by our model for an urban area is pre-
sented in Fig. 4a. Default parameter values of
log-normal distributions in Table 1 are used for
the generation. The maximum spatial spread
®pax in Table 1 are numerically obtained match-
ing the coherence distance of a sample generat-
ed by Eq. 2 and that of measurements in Table
1. The cross section of its sample ACF is depict-
ed in Fig. 4b. The measured coherence distance
is 81.9m, which is similar to the measured value
in Table 1. Note that the coherence distance of a
traffic density map generated by Eq. 2 should be
checked whether it is out of an error range,
which can be set by one’s requirements (30m for
the urban area and 100m for the rural area are
used in our simulations), comparing with the
coherence distance in Table 1. That is because
the model generates a random map of the traffic
density every time and may occasionally produce
a much different coherence distance.

The proposed model shapes the traffic densi-
ty with only a log-normal distribution with scal-
ing parameters u and o given in Table 1.
However, as shown in Fig. 2b, the traffic density
for a specific region can be accurately approxi-
mated by lognormal mixtures. For modeling by
log-normal mixtures with three components,
scaling parameters |; and o; (instead of assigning
same values of u and o for all the pixels) can be
stochastically selected for each pixel among
three components according to the proportions
p; (the probabilities of three components) in
Table 1, where i = 1, 2, 3. However, in that case,
as uncorrelated values can be assigned to adja-

cent grids, spatial correlations may not be easily
handled to fit the coherence distance. This issue
is left for the future study.

APPLICATIONS OF SPATIAL TRAFFIC MODEL

Our proposed model lays a foundation for the
analysis and simulations of cellular networks. We
provide the application of the proposed model
on network planning, resource management, and
performance analysis.

TRAFFIC DEMAND GENERATION FOR
NETWORK PLANNING

Network planning requires the real spatial distri-
bution of traffic demand in a target area. In [3],
authors used geographical and demographical
characteristics of the service area to estimate
traffic demand, and generated traffic intensity
matrix with demand nodes for network planning.
The demand node represents a certain amount
of traffic demand per unit area, which has been
widely applied to generate traffic demand as the
input of network planning algorithms. However,
if one only has a purpose of research on the
algorithm of network planning, the procedure of
traffic estimation is not necessary. In that case,
the spatial traffic model which can generate vir-
tual spatial traffic patterns must be the funda-
mental requirement for examining their
algorithm in simulations.

The demand nodes can be generated by our
model. In Fig. 5, we give an example of the gen-
eration of traffic demand nodes by using our
model with rural DL parameters in Table 1. The
pixel color indicates the magnitude of the traffic
density: the red color represents high density
and the blue color represents low density. The
basic generation method can be summarized as
follows. Once we get the traffic density matrix p
from our model, demand nodes can be randomly
dropped in each pixel. Let a (km2) denote the
area of the pixel, where a = (3/300)2 and a =

a) two dimen-
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ACF of (a).

(20/250)2 for an urban and a rural area in this
article respectively. All the nodes are assumed to
have the same amount of data rate requirement
r (bytes/second) smaller than the minimum
requirement pp,;ina/3600, where ppi, (bytes/km?2)
is the smallest element in p. Then the number of
demand nodes in the pixel g, is thus
[P/ (3600r)].

The general network planning problem is to
deploy BSs minimizing the fixed and operational
cost, while every demand node must be covered
by at least one BS. Detailed explanations about
the usage of the model in network planning can
be found in [8]. Base stations positioned by the
network planning algorithm in [8] are also
depicted in Fig. 5. In analysis and simulation, it
is important to investigate the impact of the spa-
tial traffic distribution and spatial correlation on
network planning optimization and the network
performance. For example, we evaluate energy
efficiency of the network with respect to the
inhomogeneity of the spatial traffic distribution
in [8]. Likewise, one can optimize the locations
of cells and their BSs’ transmission power levels
under various distributions and coherence dis-
tances which can be generated by our spatial
model.

NETWORK MANAGEMENT

Since the spatial imbalance of traffic loads caus-
es QoS degradations (e.g., under-utilization of
resources, increase of outage probability in con-
gestion cells), many research related to network
management such as power control, channel
allocation, fractional frequency reuse (FFR), and
load balancing have been studied. For example,
when a cell shows a much higher traffic load
than neighboring cells, BSs of neighboring cells
will lower their transmission power to avoid
interference for the QoS of the cell. Especially
in heterogeneous wireless networks, interference
management is essential due to different types of
coexisting BSs which will induce severer interfer-
ence. Configuring system model with heteroge-

neous wireless networks, developing the algo-
rithms optimized with spatial traffic distribution,
and examining the algorithms with simulations
all require the spatial traffic model.

We take load balancing as an example for the
application of our model. One can choose a load
balancing strategy to distribute the concentrated
traffic load to neighboring cells by using cell size
adjustment, bandwidth allocation, or user associ-
ation algorithms [12]. Thus, in the same manner
like network planning, research on load balanc-
ing naturally requires the non-uniform spatial
traffic model, not only to optimize, but to also
evaluate the algorithms.

In the simulation work in [12], the authors
generate temporal and spatial variations of the
user arrival rate for each cell by assuming the
log-normal distribution for the spatial distribu-
tion of traffic load across cells. However, spatial
correlations are not considered. Our proposed
model can replace independent and identically
distributed (i.i.d.) random variables (RVs) for
the generation of user arrival rates of neighbor-
ing cells by spatially correlated RVs generated
by Eq. 1.

PERFORMANCE ANALYSIS OF CELLULAR NETWORK

Stochastic geometry theory provides mathemati-
cal models and statistical methods to analyze
geometrical structure of BSs and MSs so that
the performance of wireless networks, such as
coverage and throughput, can be analyzed [11].
For example, authors in [13] evaluated energy
efficiency of Poisson-Voronoi tesselation (PVT)
cellular networks considering a non-uniform
spatial traffic distribution which is modeled by
the Pareto distribution for the traffic intensity
of MSs and the Poisson point process (PPP)
[11] for the location of MSs. Instead of the
Pareto distribution, the log-normal or Weibull
distribution can be assumed for the non-uni-
form distribution of the spatial traffic intensity
in order to evaluate the performance of cellular
networks.

86

IEEE Wireless Communications ¢ February 2014



CONSIDERATIONS AND FUTURE WORKS
SPATIAL RANDOMNESS MEASURE

Some spatial randomness measures are required
to objectively rate the spatial distribution of traf-
fic demand and node configurations. In wireless
networks, geometrical configurations of nodes
affect overall system performance because of
variations in distances between transmitters and
receivers. Authors in [11] claimed that spatial
randomness of node configurations is also an
object that needs to be addressed and overcome
like the wireless channel. To that end, the essen-
tial prerequisite is to establish both the spatial
traffic model and the spatial randomness mea-
sure, which should be utilized as components of
network traffic simulations.

The measure can be specified with the spatial
traffic model in the assumptions of simulations
like the Rayleigh-fading multipath channel
model with the delay spread and the Doppler
spread. The coherence distance proposed in this
article can also be a type of spatial randomness
measure which can evaluate the rate of spatial
fluctuations. Actually, the relationship between
the coherence distance and the maximum spatial
spread mp,,y in this article is similar to the rela-
tionship between the coherence time and the
Doppler spread of the channel.

Our previous work [8] introduced the mea-
sure of inhomogeneity proposed in [14], which
can rate the degree of inhomogeneity of the spa-
tial distribution of nodes. If each node is
assumed to have the same amount of traffic
demand and the nodes are uniformly distributed,
then the inhomogeneity has a value of zero. If
there is only one hot spot in a target area and all
the nodes are concentrated on a small area, it is
close to one. However, it is ambiguous when
there exist many small hot spots scattered in the
target area, because the measure may have a
value of near zero even if the spatial traffic pat-
tern is non-uniform. Therefore, further research
is needed to associate the inhomogeneity value
with the size and number of hot spots or to
define some other measure.

THE ISSUE OF SPATIO-TEMPORAL
TRAFFIC MODELING

Random spatial and temporal models of net-
work traffic will play an important role in man-
aging the increasing and changing mobile traffic.
With respect to the enhancement of energy effi-
ciency, our previous work [2] suggested BS sleep
operation according to traffic dynamics. Switch-
ing off some under-utilized BSs in off-peak hour
should consider spatial traffic distribution as well
as its temporal variations. It means that switch-
ing off a BS should consider the state of neigh-
boring cells’ traffic loads during a certain time
interval because neighboring BSs will need to
accommodate traffic from the sleeping cell. The
strategy actually exploits spatial and temporal
traffic variations in order to improve system per-
formance.

Existing works on cellular networks normally
assumed Poisson arrivals and uniformly dis-
tributed MSs for every cell, but it would be more

®Demand node 4 Micro BS

y (km)

x (km)

® Macro BS

x 109

Figure 5. Network planning based on demand nodes generated by the proposed

spatial model of the traffic density.

practical to use the spatio-temporal traffic model
which can produce spatial inhomogeniety, tem-
poral variations, and their spatio-temporal corre-
lations. Complete modeling of traffic dynamics
both in time and space is highly difficult because
traffic dynamic is intrinsically stochastic and the
combinatorial representation in space and time
domain is complex.

Although this article only covers spatial cor-
relations, research on adding a temporal correla-
tion in each area and correlations between daily
traffic variations of neighboring areas to the ran-
dom spatio-temporal traffic model are needed to
consider. On the other hand, in our measure-
ments of temporal traffic dynamics, it is found
that daily traffic patterns of cells are very diverse.
For instance, the distribution of peak hours is
diverse according to regional groups. Therefore,
the spatio-temporal traffic model would reflect
spatio-temporal correlations as well as geograph-
ically diverse patterns of temporal traffic varia-
tions.

APPLICABILITY TO THE
NEXT GENERATION NETWORK

The spatial distribution of the traffic density is
strongly related to human behaviors (e.g., smart-
phone usage, mobility) and the distribution of
population over space. These factors are reflect-
ed in the distribution of the traffic density,
because the spatial model in this article is based
on the traffic volume that a BS actually serviced
in a certain time interval; in other words, the
traffic volume that MSs actually requested.
Whether 3G or 4G networks are deployed, it is
conjectured that the spatial traffic distribution
will exhibit a highly skewed distribution which
may be described by the log-normal and Weibull
distribution families. While traffic analysis per-
formed herein investigates GPRS/EDGE net-
works, much work is needed on confirmation of

IEEE Wireless Communications ® February 2014

87



We provide a realistic
spatial model of the
froffic density consider-
ing the log-normal
distribution and spatial
correlations. The
proposed model is
expected to have wide
applications in the field
of cellular network
simulation.

the applicability of the spatial model in other 3G
and 4G cellular networks.

CONCLUSION

Our measurement on commercial cellular net-
works found that the cell traffic can be approxi-
mated by the Weibull or gamma distribution; the
traffic density, which is regarded as real traffic
demand of people, can be approximated by the
log-normal and Weibull distribution. The mixture
distribution such as log-normal mixtures is
required to accurately describe them because the
distributions are non-stationary over space and
time. We also analyze spatial traffic correlations
by introducing the new measure of the coherence
distance. The findings suggest that cellular net-
works should be designed considering such a high-
ly skewed and spatially correlated distribution of
cellular traffic so that resources are more efficient-
ly utilized. Generally, ordinary researchers cannot
access raw traffic data of cellular networks, and
therefore research about cellular networks have
been often hindered from lack of practical spatial
traffic models. We provide a realistic spatial
model of the traffic density considering the log-
normal distribution and spatial correlations. The
proposed model is expected to have wide applica-
tions in the field of cellular network simulation.
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